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Sortition in the News
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Okay. . . But What is Sortition?

Sortition: The process of selecting citizens’ assemblies at random, subject

to representation quotas.

origins rooted in Athenian democracy

A lot of recent work: [FGG+21, FKP21, FLPW24, BF24, ABFP25], etc.

Question

Given a pool of citizens that is not representative of the population,

how can we select a subset of the pool that is representative in a

“good” way?

There are several variations on this question!

Fundamentally, sortition is a random selection process.
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The Rest of This Talk

1. Model & Motivation

2. A Detour Into Optimization

3. Extensions: Manipulation-Robust Alternate Selection
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Model & Motivation



Model

An instance I of a sortition problem is

• N, a pool of n agents ♯ of CSCI majors

• k, a panel size need 20 people on an advisory board

• F , a set of binary features likes theory, older than 21, etc.

• ℓf ,v , uf ,v , lower and upper quota requirements for each

(f , v) ∈ F × {0, 1} need ≥ 2 and ≤ 5 people that like theory

Want

K ∈ K =
{
K ⊆ N : |K | = k ∧
ℓf ,v ≤ |{i ∈ K : f (i) = v}| ≤ uf ,v ,

∀(f , v) ∈ F × {0, 1}|
}
.
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Randomizing Over Valid Integral Panels

Given instance I with valid panels K, ∆K is the set of all possible

randomizations over valid panels.

Define π ∈ [0, 1]n as a vector of selection probabilities over N agents that

can be realized by a randomization over solutions λ ∈ ∆K, i.e.,

∃λ πi =
∑
K∈K

λK1i∈K ∧
∑
K∈K

λK = 1 ∧ λK ≥ 0, ∀i ∈ N, ∀K ∈ K

πi is the probability we select agent i to be on a (valid) panel

Let Π(I) be the set of all possible lotteries π implied by ∆K.
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Equality Objectives

Given instance I and selection probabilities π ∈ Π(I), to what extent

does each agent have an equal chance to participate on the panel?

An equality objective f : [0, 1]n → R determines how unequal a vector of

selection probabilities π is;

We always minimize f

Π⋆(I) = arginfπ∈Π(I) f (π) is the set of all maximally equal selection probabilities.

Example

1. f (π) = −min(π) maximize minimum probability of selection

2. f (π) = max(π) minimize maximum probability of selection
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A Problem

Question

What if our representation quotas are too restrictive?

We may not have enough valid panels to randomize over!

Randomization is inherent to what sortition is.
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Let’s relax. Perhaps allowing flexibility in our quotas (± ∼ 1) will result

in better lotteries?

Figuring this out requires optimizing simultaneously over the equality

objective f , and the flexibility of our quotas!

Hard to do when our panels are integral

Easier when they are allowed to be continuous
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No Free Lunch1 ⌢

In sortition, we want to optimize several properties of our panel.

Unfortunately, some of these properties are in inherent conflict with one

another.

Making sense of these tradeoffs is difficult when we require our algorithm

to take “whole” people, but the analysis might be nicer if we allow

fractional panels.

Recall f captures how unequal selection probabilities are; let g capture

how bad a panel is. e.g. unrepresentative, vulnerable to manipulation

1Props. LL & MM passed in Colorado, though! ⌣
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A Detour Into Optimization



Integral & Continuous Panels

The set of valid integer panels is

K =
{
K ⊆ N : |K | = k ∧
ℓf ,v ≤ |{i ∈ K : f (i) = v}| ≤ uf ,v ,

∀(f , v) ∈ F × {0, 1}|
}
.

Π(I) is the set of lotteries π over valid integer panels implied by ∆K.

The set of valid continuous panels is

Π̃(I) =
{
π̃ ∈ [0, 1]n :

∑
i∈N

π̃i = k ∧

ℓf ,v ≤
∑

i∈N, f (i)=v

π̃i ≤ uf ,v ∀(f , v) ∈ F × {0, 1}
}
.

Elements of Π(I) are integer solutions, and elements of Π̃(I) are
continuous solutions.
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Integrality Gaps: Convergence in the Limit? Intuition

Given an instance I = (N, k , ℓ,u). What if we scaled I up, i.e.,

Ic = (cN, ck , cℓ, cu)? Does limc→∞ Π(Ic) = Π̃(I)? ✓

Intuition: scaling up an instance makes people more divisible, i.e., makes

the feasible region more “dense.”

Example

Q N f1 f2 f3 f4 ♯ Q N f1 f2 f3 f4 ♯

2.3 3 0 1 1 1 4 4.6 5 0 1 1 1 8

2.3 3 1 0 1 1 4 4.6 5 1 0 1 1 8

2.3 2 1 1 0 1 4 4.6 5 1 1 0 1 8

2.3 2 1 1 1 0 4 4.6 4 1 1 1 0 8
2
3 0 0 0 0 0 1 4

3 1 0 0 0 0 2

k = 10 k = 20

ℓ·,1 = 7 ℓ·,1 = 14

Take 1
2 a person from each of 0111, 1011, and redistribute. 12



Integrality Gaps: Convergence in the Limit? Formalize

Theorem 1

Given I = (N, k, ℓ,u) and Ic(cN, ck , cℓ, cu), limc→∞ Π(Ic) = Π̃(I)
with convergence rate O(

√
n
c ).

Let δp|c =
{

k
p : k ∈ {0, . . . , p}; p ∈ N, p|c

}
.

The set of valid restricted continuous panels is

Π̃δ(I) =
{
π̃ ∈ δnp|c :

∑
i∈N

π̃i = k ∧

ℓf ,v ≤
∑

i∈N, f (i)=v

π̃i ≤ uf ,v ∀(f , v) ∈ F × {0, 1}
}
.

Need to show: limc→∞ δnp|c = [0, 1]n. technically (Q ∩ [0, 1])n
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Integrality Gaps: Convergence in the Limit? Proof Sketch

Theorem 1

Given I = (N, k, ℓ,u) and Ic(cN, ck , cℓ, cu), limc→∞ Π(Ic) = Π̃(I)
with convergence rate O(

√
n
c ).

Proof (Sketch) of Theorem 1.

We first show limc→∞ δp|c = [0, 1]. Consider

δp|c =
⋃

p, p|c

{
k

p
: k ∈ {0, . . . , p}

}
= {0} ∪

⋃
p, p|c

p⋃
k=0

{
k

p

}

Note δp|c ⊆ δp|cm since if p|c, then p|cm. So,

lim
c→∞

δP(c) = {0} ∪
∞⋃
c=1

⋃
p, p|c

p⋃
k=0

{
k

p

}
= Q ∩ [0, 1].
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Integrality Gaps: Convergence in the Limit? Proof Sketch

Theorem 1

Given I = (N, k, ℓ,u) and Ic(cN, ck , cℓ, cu), limc→∞ Π(Ic) = Π̃(I)
with convergence rate O(

√
n
c ).

Proof (Sketch) of Theorem 1, Continued.

The Hausdorff distance between δp|c and Q ∩ [0, 1] is

dH(δp|c ,Q ∩ [0, 1]) = sup
q∈(Q∩[0,1])n

inf
x∈δn

p|c

||x − q||2

=

∣∣∣∣∣∣∣∣( 1

2c
, . . . ,

1

2c

)∣∣∣∣∣∣∣∣
2

=

√
n

2c
.

The idea is that the furthest q ∈ (Q ∩ [0, 1])n is at the centroid of the

n-hypercube with sidelengths 1
c .

! There’s a problem! The rate should decrease with n!
We’ll figure this out. . .
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Integrality Gaps: Minimal Instances

Great! So as we scale up instances, the integral solutions converge to the

continuous ones.

Question

But what can we say about a fixed instance size, say one where there

are |F | features to deal with?
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Integrality Gaps: Minimal Instances, A Lower Bound

Example

Q N f1 f2 f3 ♯

1.5 2 0 1 1 3

1.5 2 1 0 1 3

1.5 1 1 1 0 3

0.5 0 0 0 0 1

k = 5 ℓ·,1 = 3

In the integral case, we are prohibited from taking 0000. In the

fractional case, we can take 0.5 of 0000. So, the integrality gap is

min(π̃)−min(π) =
1

2
− 0 =

1

2
.
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Integrality Gaps: Minimal Instances, Generalized Lower Bounds

Theorem 2

For all F with |F | ≥ 3, there exists an instance I = (N, k, ℓ,u) such
that

min(π̃)−min(π) =
|F | − 2

|F | − 1
.

Proof (Sketch).

The construction is as follows.

Q N f1 f2 · · · f|F |−1 f|F | ♯

|F |+ 1
|F |−1 − 2 |F | − 1 0 1 · · · 1 1 |F |

|F |+ 1
|F |−1 − 2 |F | − 1 1 0 · · · 1 1 |F |

|F |+ 1
|F |−1 − 2 |F | − 2 rest of the feature vectors |F |

|F |−2
|F |−1 0 0 0 · · · 0 0 1

k = 2(|F | − 1) + (|F | − 2)2, ℓ·,1 = u·,1 = (|F | − 1)2 + 1.
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Integrality Gaps: Minimal Instances, Generalized Lower Bounds

Theorem 2

For all F with |F | ≥ 3, there exists an instance I = (N, k, ℓ,u) such
that

min(π̃)−min(π) =
|F | − 2

|F | − 1
.

Proof (Sketch), Continued.

First, min(π) = 0, since 0 · · · 0 is never chosen. If we didn’t abide by

our selections above (up to symmetry), we’d not satisfy the lower

quotas. We’d have

|{(f , v) in panel : v = 1}| = max{|F |+ |F | − 1 + (|F | − 2)2, 2(|F | − 1)

+ (|F | − 1)(|F | − 2)}
< 2(|F | − 1) + (|F | − 2)2 = ℓf ,1.

The argument for min(π̃) follows accordingly.
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Extensions: Manipulation-Robust

Alternate Selection



Selecting Alternates

After a panel has been selected, panelists may “drop out” due to other

commitments.

Question

How can we select a slate of alternates A ⊆ N to ensure the panel can

still be representative, before seeing which panelists drop out?

[ABFP25] give an ERM-based algorithm to select A ⊆ N given estimates

of panelists’ dropout probabilities.
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Manipulation-Robust Sortition

Ideally, agents shouldn’t be able to manipulate the selection algorithm by

misreporting their features.

But, the algorithm should still be fair, i.e., has a high minimum selection

probability.

• max(π) is robust to manipulation, but is unfair minimax

• −min(π) is optimally fair, but easy to manipulate leximin

Question

Is there an optimal balance?

[BF24] give an equality objective that achieves the best bounds that we

can hope for goldilocks
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Selecting Alternates & Manipulation-Robust Sortition?

Given a two-stage selection process, members of the pool can become

panelists by being chosen as a panelist directly, or being chosen as an

alternate and being called in as a replacement.

How can agents misreport their features in this setting? Incentives are

very different!

21



What could g be?

Detour: Originally wanted to simultaneously optimize our equality

objective f and another objective g , describing some other property of

the panel.

Possible choices for g :

• robustness to dropouts; g(K ) = ED∼D̂L(K \ D)

• diversity; g(K ) is the number of unique vectors in K

• robustness to dropouts with alternates; g(A) = ED∼D̂L(K \ D ∪ R)

R ⊆ A ⊆ N

• closeness to representation targets

• anything you want

Would love to use our optimization framework in this setting!
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The Future Thank You!

There are some nice connections to |F |-dimensional matching. Can

approximation results/integrality gaps/bounds from there be applied

here?

This work started with how to make alternate-selection manipulation

robust! How can we apply our optimization ideas/results?

As always, we’d like to improve our bounds, convergence rates, etc. And

we think we certainly can.

adithya@colorado.edu
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