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Sortition in the News

I)
Select Public Officials
“Randomly, Like Jury Duty
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Okay. . . But What is Sortition?

Sortition: The process of selecting citizens' assemblies at random, subject
to representation quotas.

origins rooted in Athenian democracy

A lot of recent work: [FGG'21, FKP21, FLPW24, BF24, ABFP25], etc.

Question

Given a pool of citizens that is not representative of the population,
how can we select a subset of the pool that is representative in a
“good” way?

There are several variations on this question!

Fundamentally, sortition is a random selection process.



The Rest of This Talk

1. Model & Motivation

2. A Detour Into Optimization

3. Extensions: Manipulation-Robust Alternate Selection



Model & Motivation



Model

An instance Z of a sortition problem is

e N, a pool of n agents f of CSCI majors
e k, a panel size need 20 people on an advisory board
e F, a set of binary features likes theory, older than 21, etc.

e /¢y, ur,, lower and upper quota requirements for each
(f,v) e F x{0,1} need > 2 and < 5 people that like theory

Want

Kek={KCN:|Kl=kn
ley <|{i€e K:f(i)=v} <ury,
Y(f,v) € F x {0,1}|}.



Randomizing Over Valid Integral Panels

Given instance Z with valid panels IC, Ag is the set of all possible
randomizations over valid panels.

Define 7w € [0, 1]” as a vector of selection probabilities over N agents that
can be realized by a randomization over solutions A € Ag, i.e.,

X mi=> Mkliek A D Ak=1A X0, VieN, VKek
KeK KeK

;i is the probability we select agent i to be on a (valid) panel

Let M(Z) be the set of all possible lotteries 7 implied by Aj.



Equality Objectives

Given instance Z and selection probabilities v € IN(Z), to what extent
does each agent have an equal chance to participate on the panel?

An equality objective f : [0,1]” — R determines how unequal a vector of
selection probabilities 7r is;

We always minimize f

M*(Z) = arginf,.cn(z) f () is the set of all maximally equal selection probabilities.

Example
1. f(w) = — min() maximize minimum probability of selection

2. f(w) = max(w) minimize maximum probability of selection



A Problem

Question

What if our representation quotas are too restrictive? \\0\)

We may not have enough valid panels to ra mﬁver| ;}
Randomization is inherent to m’ar‘mon is.

Let's relax. Perh& mg erxnb ttax'r quotas (& ~ 1) will result

in better |

Iﬁmg this o @‘e\s optimizing simultaneously over the equality
objective f, and®the flexibility of our quotas!

Hard to do when our panels are integral

Easier when they are allowed to be continuous



No Free Lunch! ®

In sortition, we want to optimize several properties of our panel.

Unfortunately, some of these properties are in inherent conflict with one
another.

Making sense of these tradeoffs is difficult when we require our algorithm
to take “whole” people, but the analysis might be nicer if we allow
fractional panels.

Recall f captures how unequal selection probabilities are; let g capture

how bad a panel is. e.g. unrepresentative, vulnerable to manipulation

IProps. LL & MM passed in Colorado, though! ©
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A Detour Into Optimization




Integral & Continuous Panels

The set of valid integer panels is
IC:{KQN:|K\:k/\

ey <|{i € K: (i) = v}| < ur.,
Y(f,v) € F x {0,1}|}.

M(Z) is the set of lotteries 7 over valid integer panels implied by Ax.

The set of valid continuous panels is
A(T) = {7"1- e0,1]": ) i = kA
ieN
o< Y F<up, Y(f,v)eEFx {0,1}}.

iEN, f(i)=v

Elements of M(Z) are integer solutions, and elements of [1(Z) are
continuous solutions.
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Integrality Gaps: Convergence in the Limit? Intuition

Given an instance Z = (N, k, £, u). What if we scaled Z up, i.e.,

T. = (cN, ck, ct, cu)? Does lim._,, N(Z.) = N(Z)? v

Intuition: scaling up an instance makes people more divisible, i.e., makes

the feasible region more “dense.”

Example
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Take % a person from each of 0111, 1011, and redistribute.

k =20
£,=14

12



Integrality Gaps: Convergence in the Limit? Formalize

Theorem 1

Given T = (N, k, £, u) and Z.(cN, ck, ck, cu), lime_o M(Z.) = N(Z)
with convergence rate 0(4)

Letdp‘cz{%:kG{O,...7p};p€N, p|C}.

The set of valid restricted continuous panels is

f19(Z) = {ﬁeé;lc ;S #= kA

ieN
o< Y Fi<up, Y(fv)eFx {0,1}}.
iEN, f(i)=v
Need to show: lim¢c_ oo 5S|c = [0, 1]". technically (Q N [0, 1])"
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Integrality Gaps: Convergence in the Limit? Proof Sketch

Theorem 1

Given T = (N, k, £, u) and T.(cN, ck, ck, cu), lim._,o N(Z.) = N(Z)
with convergence rate O(@)

Proof (Sketch) of Theorem 1.

We first show lim¢_,o dpjc = [0,1]. Consider
k
Splc = LJ{p:ke{Qn.m}}—{@LJLJLJ{ }
p,plc p, plc k=0

Note d,c € 6pjcm since if p|c, then p|c™. So,

Tim 3p(c =) U U{ }

c=1p, p|c k=0

=QnJo,1]. O
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Integrality Gaps: Convergence in the Limit? Proof Sketch

Theorem 1

Given T = (N, k, £, u) and T.(cN, ck, ck, cu), lim._,o N(Z.) = N(Z)
with convergence rate O(@)

Proof (Sketch) of Theorem 1, Continued.
The Hausdorff distance between 6, and QN [0, 1] is

dH((;p\chm[Ov 1]) = sup ini ||X_q||2
q€(Qn[o,1])" ¥€%;c

(L N[

S \2c 2 )|, 2¢

The idea is that the furthest g € (Q N [0, 1])" is at the centroid of the
n-hypercube with sidelengths % O]

There’s a problem! The rate should decrease with n!
We'll figure this out. . .
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Integrality Gaps: Minimal Instances

Great! So as we scale up instances, the integral solutions converge to the
continuous ones.

Question
But what can we say about a fixed instance size, say one where there
are |F| features to deal with?
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Integrality Gaps: Minimal Instances, A Lower Bound

Example
Q N|A h K
15 210 1 1 3
15 2(1 0 1 3
15 11 1 0 3
05 0|0 0 0 1
k=5 £.1=3

In the integral case, we are prohibited from taking 0000. In the
fractional case, we can take 0.5 of 0000. So, the integrality gap is

min(#) — min(w) == - 0= =.
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Integrality Gaps: Minimal Instances, Generalized Lower Bounds

Theorem 2
For all F with |F| > 3, there exists an instance Z = (N, k, £, u) such
that Fl_o
min(#) — min(7) = F: : 1
Proof (Sketch).
The construction is as follows.

Q N | A f - figa  fig &
IFl+H=x -2 IF|-1| 0 1 ... 1 1 |F|
Fl+ Fmz—2 |Fl-1| 1 0 - 1 1 |F|
|F|+ IF\%l —2 |F|—2 | rest of the feature vectors |F|

=2 0 o 0 -~ 0 0 1

k=2(FI-1)+(|F| =22 t1=u1=(F| -1 +1. O



Integrality Gaps: Minimal Instances, Generalized Lower Bounds

Theorem 2

For all F with |F| > 3, there exists an instance Z = (N, k, £, u) such
that

_Fl=2

LGS

min(#) — min(7)

Proof (Sketch), Continued.

First, min(w) = 0, since 0---0 is never chosen. If we didn't abide by
our selections above (up to symmetry), we'd not satisfy the lower
quotas. We'd have

{(f,v) in panel : v = 1}| = max{|F| + |F| — 1 + (|F| — 2)%,2(|F| — 1)
+(IF| = 1)(IF| - 2)}
<2(|F| = 1)+ (|F| = 2)* = £r1.

The argument for min(#) follows accordingly. O
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Extensions: Manipulation-Robust
Alternate Selection




Selecting Alternates

After a panel has been selected, panelists may “drop out” due to other
commitments.

Question

How can we select a slate of alternates A C N to ensure the panel can
still be representative, before seeing which panelists drop out?

[ABFP25] give an ERM-based algorithm to select A C N given estimates
of panelists’ dropout probabilities.

19



Manipulation-Robust Sortition

Ideally, agents shouldn't be able to manipulate the selection algorithm by
misreporting their features.

But, the algorithm should still be fair, i.e., has a high minimum selection

probability.
e max(7r) is robust to manipulation, but is unfair minimax
e —min(m) is optimally fair, but easy to manipulate leximin
Question

Is there an optimal balance?

[BF24] give an equality objective that achieves the best bounds that we
can hope for goldilocks

20



Selecting Alternates & Manipulation-Robust Sortition?

Given a two-stage selection process, members of the pool can become
panelists by being chosen as a panelist directly, or being chosen as an
alternate and being called in as a replacement.

How can agents misreport their features in this setting? Incentives are
very different!

21



What could g be?

Detour: Originally wanted to simultaneously optimize our equality
objective f and another objective g, describing some other property of

the panel.

Possible choices for g:

e robustness to dropouts; g(K) =E,_sL(K \ D)

diversity; g(K) is the number of unique vectors in K

robustness to dropouts with alternates; g(A) = E,_sL(K\ DUR)
RCACN

e closeness to representation targets

anything you want

Would love to use our optimization framework in this setting!
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The Future Thank You!

There are some nice connections to |F|-dimensional matching. Can
approximation results/integrality gaps/bounds from there be applied
here?

This work started with how to make alternate-selection manipulation
robust! How can we apply our optimization ideas/results?

As always, we'd like to improve our bounds, convergence rates, etc. And
we think we certainly can.

adithya@colorado.edu
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