
A General Theory of Liquidity Provisioning

for Prediction Markets

Adithya Bhaskara, Rafael Frongillo, and Maneesha Papireddygari

{adithya,raf,maneesha.papireddygari}@colorado.edu

July 29, 2025

Abstract

In Decentralized Finance (DeFi), automated market makers typically implement liquidity
provisioning protocols. These protocols allow third-party liquidity providers (LPs) to provide
assets to facilitate trade in exchange for fees. This paper introduces a general framework for
liquidity provisioning for cost-function prediction markets with any finite set of securities. Our
framework is based on the idea of running several market makers “in parallel”; we show formally
that several notions of parallel market making are equivalent to ours. The most general protocol
therefore allows LPs to submit an arbitrary cost function, which specifies their liquidity over the
entire price space, and determines the deposit required. We justify the need for this flexibility
by demonstrating the inherent high dimensionality of liquidity. We also give several restricted
protocols which are more computationally feasible.

Furthermore, we show that our protocol recovers several existing DeFi protocols in the 2-
asset case. Our work also contributes to the DeFi literature by giving a fully expressive protocol
for any number of assets.

1

ar
X

iv
:2

31
1.

08
72

5v
2

 [
cs

.G
T

]
 2

8
Ju

l 2
02

5

mailto:adithya@colorado.edu
mailto:raf@colorado.edu
mailto:maneesha.papireddygari@colorado.edu
https://arxiv.org/abs/2311.08725v2

1 Introduction

The concept of an automated market maker was originally introduced by Hanson (2003) to solve
thin market problems in combinatorial prediction markets. In contrast to order books and contin-
uous double-auctions, where buyers are matched to sellers, automated market makers are central
authorities willing to price any bundle of assets to buy or sell. More recently, automated market
makers have gained in popularity in the context of decentralized finance (DeFi) as a low-gas way
to implement a market on a blockchain (Base, 2025; Bartoletti et al., 2022; Xu et al., 2023; Mohan,
2022). Along with this trend came the innovation of decoupling the roles of the market mechanism,
which facilitates trade, and liquidity providers, which take on risk to stabilize prices. With this
decoupling, the DeFi market mechanism exposes another interface to potential liquidity providers
(LPs). LPs, now distinct from the market maker, deposit assets in exchange for a cut of the fees
charged on the trades using those assets.

Thus far, however, the design of liquidity provisioning interfaces has been somewhat ad-hoc
and only focused on the case of two assets. In the Uniswap V2 interface, LPs must deposit funds
proportional to the current reserves, a natural yet restrictive interface. Zetlin-Jones et al. (2024)
show how these restrictions lead LPs to actively trade against the market—that is, themselves
and other LPs—leading to potential inefficiencies. Uniswap V3 adds significant flexibility, but the
interface is still somewhat cumbersome: LPs must contend with discrete “buckets” in the price
space to allocate their funds. Throughout, the full design space of liquidity provisioning protocols
has been far from clear.

This gap is especially large in the case of prediction markets, as they often exchange more
than two securities. For example, an election market might offer a security for each potential
candidate, or even a combinatorial market for the outcomes per state. Offering multiple independent
markets for each pair of securities not only leads to information loss, it creates large arbitrage
opportunities that increases the risk of providing liquidity (Dudik et al., 2012). Thus, effective
liquidity provisioning protocols for more than two assets could have a significant impact on the
performance and prevalence of prediction markets. Despite all these considerations, no liquidity
provisioning protocol for prediction markets has been proposed.

We fill this gap by introducing a general framework for liquidity provisioning protocols for cost-
function prediction markets trading any number of securities (§ 4). Our framework is designed on
the idea of LPs running market makers “in parallel”; we show that several notions of parallel market
making are equivalent, including scoring rule markets of Hanson (2003) (§ 5). Our protocol allows
LPs to submit an arbitrary cost function, specifying essentially any liquidity allocation over the
price space, and determines the deposit required to indeed provide that liquidity. One could view
our protocol as theoretically formalizing Minswap (Nguyen, 2021), which is designed on Cardano
to accomodate multiple LP pools. When working with 3 or more assets, we argue that the liquidity
at a given price must be described by a full matrix, allowing one to assess the liquidity in each
“direction”, i.e., for each possible trade (§ 3). As a corollary, any fully general liquidity provisioning
protocol must allow liquidity between all assets simultaneously, rather than only allowing liquidity
in pairwise markets. We show how our protocol can recover existing DeFi protocols in the case of
two assets, while also giving rise to expressive DeFi protocols with any number of assets that are
more computationally feasible (§ 6). We conclude in § 7 with a discussion of fees in n ≥ 3 securities
and open directions.

2

1.1 Related work

We direct readers to Chen and Pennock (2007); Abernethy et al. (2013) for an overview of the
literature on automated market makers for prediction markets, and to Angeris and Chitra (2020) for
those in DeFi. Our work heavily relies on Frongillo et al. (2023), which establishes the equivalence
of (non-parallelized) automated market makers as used for prediction markets to those used in
DeFi. One can view our analysis of the trade split r =

∑
i r

i as a special case of optimal routing
problems stated in Angeris et al. (2022); Diamandis et al. (2023). We provide a closed form solution
to this special case not yet seen in the literature. This work is also related to recent explorations
of running parallel LMSRs in Dud́ık et al. (2021) and of geometric aspects of automated market
makers (Angeris et al., 2023). In particular, the Minkowski sum operations in latter paper can be
seen as implicitly computing an infimal convolution, which they also view as a combined market
maker. However, their connections to implementing liquidity provisioning are not explored beyond
a very restricted setting.

Perhaps closest to our general framework is Milionis et al. (2023), which asks LPs for their
“demand curves” to be aggregated into a two-asset market maker. Our framework can be thought
of as a similar, but more generalized, way of thinking about LPs running several markets in parallel.
Their demand curves h(p) (denoted g(p) in their paper) are related to our market scoring rule with
h(p) = S(p, 1) and −

∫
pdh(p) = S(p, 0). While demand curves are well rooted in micro-economic

foundations (Milionis et al., 2024), we demonstrate in § 3 that cost functions (or some other suit-
able higher-dimensional notion of demand curves) are necessary to give a fully general liquidity
provisioning protocol for more than two assets, a crucially important case for prediction markets
as we describe above. They are also instrumental in helping us propose a closed-form construc-
tion of aggregate CFMMs and in helping us realize and prove different equivalent interpretations
(Theorem 1).

2 Background

2.1 Notation and convex analysis

Vectors are denoted in bold, e.g. q ∈ Rn, and qi ∈ R denotes the ith coordinate of q. The all-zeros
vector is 0 = (0, . . . , 0) and the all-ones vector is 1 = (1, . . . , 1). We define the indicator vector δi

by δii = 1 and δij = 0 for j ̸= i. Comparison between two vectors is pointwise, e.g. q ≻ q′ if qi > q′i
for all i = 1, . . . , n, and similarly for ⪰. We say q ≩ q′ when qi ≥ q′i for all i and q ̸= q′. Define
Rn
≥0 = {q ∈ Rn | q ⪰ 0}, Rn

>0 = {q ∈ Rn | q ≻ 0}, et cetera. Finally, we denote the probability
simplex by ∆n = {p ∈ Rn

≥0 | ⟨p,1⟩ = 1}.
Let f : Rn → R. We use the following conditions.

• convex : ∀x,y ∈ Rn, λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

• 1-invariant : f(q+ α1) = f(q) + α for all q ∈ Rn, α ∈ R.
• 1-homogeneous (on Rn

≥0): f(αq) = αf(q) for all q ⪰ 0 and α > 0.

We use f ′ to indicate differentiation when f is 1-dimensional.

Definition 1 (Convex conjugate). For a function f : Rn → R∪{∞} we define its convex conjugate
f∗ : Rn → R ∪ {∞,−∞} by f∗(x∗) = supx∈Rn ⟨x∗,x⟩ − f(x).

3

Definition 2 (Subgradient). For a function f : Rn → R ∪ {∞} and x ∈ Rn we define the set of
subgradients of f at x by ∂f(x) = {x∗ ∈ Rn | ∀x′ ∈ Rn f(x′)− f(x) ≥ ⟨x∗,x′ − x⟩}.

Definition 3 (Infimal convolution). For functions fi : Rn → R ∪ {∞} we define their infimal
convolution f =

∧
i fi by f(x) = inf

{∑
i fi(x

i) |∑i x
i = x

}
, where the xi range over Rn.

Definition 4 (1-homogeneous extension f). Given f : ∆n → R, we define its 1-homogeneous
extension f : Rn

≥0 → R by f(x) := ∥x∥1f(x/∥x∥1) for x ̸= 0 and f(0) = 0.

2.2 Cost functions and prediction markets

Automated market makers (AMMs) are mechanisms that are always willing to trade a bundle of n
securities for some price. In contrast to traditional order book settings, where traders are waiting
to be matched with sellers, traders can trade with AMMs directly. Prediction markets are AMM
mechanisms that seek to elicit probability distributions over future events by allowing traders to
buy and sell securities. Some common instantiations of prediction markets can be seen in horse
betting, Iowa electronic markets, and more recently, Manifold markets (Manifold, 2022).

Suppose a random variable Y about a future event takes values from set Y, which contains
n mutually exclusive and exhaustive outcomes. A trader holding an Arrow-Debreu (AD) security
associated with y ∈ Y gets paid $1 when outcome y happens and $0 otherwise. A security market
is complete if it trades n independent AD securities, one for each outcome. While our Protocol 1
works for incomplete markets, our proofs in § 5.3 rely heavily on the market being complete. For
this reason and for ease of exposition, we restrict our attention in this paper to complete markets.

Chen and Pennock (2007); Chen et al. (2013); Abernethy et al. (2013) characterize prediction
markets, and Abernethy et al. (2013) show that they should be implemented by a cost function-
based market maker satisfying certain conditions in order to satisfy certain information elicitation
axioms. We define these below.

Definition 5 (Cost function-based market maker). A cost function-based market maker with n
securities is one that prices each security via a differentiable potential function C : Rn → R.
Suppose a trader wants to purchase a bundle of securities r′ ∈ Rn

≥0; that is, ri shares of security i.
Then, the trader must pay C(q+ r′)− C(q) in cash to the market maker.

As shown by Abernethy et al. (2013), prediction markets that elicit information well are precisely
cost function-based prediction markets with C convex and 1-invariant.

Remark (From Frongillo et al. (2023)). For a net trade1 r ∈ Rn, the cost function satisfies C(q+
r) = C(q).

To see why this is true, we use the observation that in a complete AD securities market, holding
one of each security i.e., 1 is equivalent to holding $1 cash. If the trader requests the market
maker a trade of r′ ∈ Rn

≥0, they have to pay C(q + r′) − C(q) cash. The net trade is hence
r = r′−(C(q+r′)−C(q))1. Using the 1-invariant property of C, we can see that C(q+r) = C(q).

Cost function-based markets always maintain a liability q ∈ Rn of securities, qi of security i
that the market has sold so far. The term liability comes from the notion that C(q) is the amount
of cash wagered in the market, that the market maker is liable for.

1Note that while it is not customary for predictions to deal with the net trade, we find it easier to, especially as
the comparisons to the DeFi literature are easier to make, as we see later.

4

2.3 Scoring rules

Scoring rules were introduced by Brier (1950) to score forecasts of a random variable such as Y
above. In this setting, we seek to design a score S(p, y) that determines the quality of prediction
p ∈ ∆Y upon observing the outcome y ∈ Y, with the property that EpS(p

′, Y) is maximized at
p′ = p. The full characterization of such “proper” scoring rules take the form

SG(p, y) = G(p) + ⟨dGp, δy − p⟩

where G : ∆Y → R is a convex function (Gneiting and Raftery, 2007). When Y = {0, 1}, we can
write p ∈ [0, 1] to be the predicted probability that Y = 1, and write Sg(p, y) = g(p) + g′(p)(y − p)
for g : [0, 1]→ R convex.

Hanson (2003) showed that scoring rules could be used to design AMMs in a form we call a
scoring rule market ; see Protocol 3. The basic idea is to pay traders according to a difference of
scoring rules, with the latest trader’s prediction acting as the current market price. It was later
shown that this formulation is equivalent in a strong sense to the cost-function market makers
described above (Abernethy et al., 2013). Specifically, the scoring rule market for SG is equivalent
to the cost-function market maker with cost function C = G∗, the convex conjugate of G.

A corollary of these connections, leveraged in Frongillo et al. (2023), is that one can use scoring
rules as vectors to convert between the market price vector and the current liability/reserve vector.
Specifically, let SG(p, ·) = (SG(p, y))y∈Y ∈ (R∪{∞})n be the scoring rule vector for price p. Then,
up to a uniform shift, the liability vector of a cost-function market maker with cost function C = G∗

at price p is simply SG(p, ·). We will use this correspondence throughout the paper, as well as the
2-outcome version Sg(p, ·) = (g′(p), 0) + (g(p)− p · g′(p))1 ∈ (R ∪ {∞})2.

2.4 Automated market makers in decentralized finance

Recently, AMMs have been implemented in a widespread manner for decentralized finance (DeFi).
There, the goal is not information elicitation, as in prediction markets, but rather the exchange
of assets–namely cryptocurrencies. Analogous to how cost function markets maintain a liability
vector q, AMMs maintain a reserve vector x = −q of assets.

The framework of constant function market makers (CFMMs) is prominent in the DeFi lit-
erature. Frongillo et al. (2023); Angeris and Chitra (2020); Schlegel et al. (2022) argue that for
various restrictions on their design, CFMMs satisfy desirable market making axioms. We define
these market makers below.

Definition 6 (Constant function market maker, CFMM). A constant function market maker
(CFMM) is a market maker based on a potential function φ : Rn → R that maintains a liability
q ∈ Rn. At the current liability, the set of trades r available are those that satisfy φ(q+ r) = φ(q).
After a trade, the liability vector updates to q← q+ r.

Consistent with this definition, as we soon again discuss, in this paper, we adopt the sign
convention that trades are always oriented toward the trader. For example, a trade r = (1,−3)
corresponds to giving the trader 1 unit of asset 1 in exchange for 3 units of asset 2. As explored in
Frongillo et al. (2023) and other works, the classic cost function market makers commonly employed
in prediction markets are special cases of CFMMs that retain the full flexibility of general potential
functions φ.

5

The relationship between cost function prediction market makers and CFMMs is thoroughly
explored in Frongillo et al. (2023). The two objects are different, but give rise to equivalent
characterizations of markets. We use cost functions throughout, even when discussing CFMMs,
as they have more mathematical structure without loss of expressiveness. For example, while for
any potential φ, one can take ratios of partial derivatives to compute relative prices, this task
is even easier for cost functions, as prices are normalized. In the context of prediction markets,
normalization means that prices p ∈ ∂C(q) can be thought of as a probability distribution over
outcomes. With or without this interpretation, we frequently use the fact that ∂C(q) ⊆ ∆n for all
q ∈ Rn.

Some examples of CFMMs include the logarithmic market scoring rule (LMSR) with potential
function φ(q) = b log

(∑n
i=1 e

qi/b
)
for b > 0. Another example is the constant product market

maker which has a potential that is not a cost function: φ(q) = q1 · q2 · · · qn. The cost function
equivalent to the constant product market maker in two assets is given by

C(q) =
1

2

(
q1 + q2 +

√
4α2 + (q1 − q2)2

)

as found in Chen and Pennock (2007); Frongillo et al. (2023). We also have G(p) = C∗(p) =
−2√αp1p2 and more generally G(p) = −n(αp1 · p2 · · · pn)1/n.

A major AMM innovation in DeFi is the introduction of liquidity provisioning. In traditional
AMMs, the market maker took on an additional risk of price fluctuations of the reserves for the
ability to run a market always willing to price a bundle of assets. The DeFi implementations
of AMMs, though, have outsourced provisioning these reserves, and hence liquidity, to external
parties called liquidity providers (LPs). The AMMs typically define trade dynamics when liquidity
is fixed. In this setting, traders can exchange assets with the market maker in a way that keeps
the reserves/liability on the same invariant curve of φ or C. Decentralized finance protocols like
Uniswap V2 and Uniswap V3 also allow liquidity providers (LPs) to change the market’s liquidity
while keeping the price p invariant (Adams et al., 2020, 2021). LPs may either add, or mint,
liquidity to the market or remove, or burn, liquidity from the market. LPs make it easier for
the AMM to conduct trades by absolving the market maker of the risk of providing liquidity. As
compensation for taking on the risk, LPs are rewarded using trading fees, which are skimmed off
along with the trade requested. This provides a pool to be distributed proportionally to LPs as
the liquidity they allocated is used.

3 Defining liquidity in automated market makers

Informally, liquidity is the extent to which assets/securities can be exchanged. Below we quantify
this notion, locally around a given price, in the context of automated market makers.

3.1 Liquidity as price insensitivity

One way to capture liquidity, locally, is to quantify the extent to which the price stays stable during
a transaction. In other words, the lower the rate of change of the price, the higher the liquidity.

Thus far in the prediction market literature, even for large numbers of securities, liquidity is
often captured by a single parameter. The most popular approach is to consider some base cost
function C and define Cη via the perspective transform Cη(q) = ηC(q/η), where η corresponds to
the liquidity of the market (Othman et al., 2013; Li and Vaughan, 2013; Abernethy et al., 2014;

6

Othman and Sandholm, 2011). Another approach is to define the liquidity of C to be some function
of its Hessian ∇2C such as the inverse of its norm (Abernethy et al., 2013). A noted exception is
Dud́ık et al. (2014), where liquidity is acknowledged to depend on which specific subset of securities
are under consideration. Our approach is closest to the latter: as we argue soon in § 3.2, liquidity is
indeed inherently multidimensional. Any subspace of securities could have any degree of liquidity.
It is true that for very restricted protocols such as Uniswap V2, which indeed corresponds to the
perspective transform, liquidity has a fixed shape that can be scaled by a single real parameter.
But, in general, liquidity must be captured by a higher-dimensional object.

To make the above discussion concrete, let us begin with the case of 2 securities. Here we take
advantage of the fact that by 1-invariance, a 2-dimensional cost function is really specified by only
a 1-dimensional function. More formally, given any 1-invariant cost function C : Rn → R, we may
write C(q) = c(q1−q2)+q2 for some convex c : R→ R given by c(q) = C((q, 0)). Letting q = (q, 0),
then, the price of security 1 is ∇C(q)1 = c′(q).

Appealing to the above local notion of liquidity, let us define the liquidity at price p to be the
reciprocal of the rate of change of the price when the price is p. While not required in general, for
the purposes of this intuitive derivation, suppose that c′′ > 0 everywhere. Then formally, we can
define the liquidity at price p ∈ [0, 1] as ℓ(p) = 1/c′′(q) > 0, where p = c′(q). Since ℓ is strictly
positive, we find that ℓ(p) = g′′(p) for some convex function g : [0, 1] → R. This relationship
is in essence a special case of convex conjugate duality: we may simply take g = c∗. From this
duality, we have g′ = (c′)−1, which is well-defined as c′ is strictly monotone; by the inverse function
theorem, we could equivalently derive ℓ as ℓ(p) = ((c′)−1)′(p) = g′′(p).

In higher dimensions, we can analogously define the liquidity at price p to be ℓ(p) = (∇2C(q))+

at any vector q with price ∇C(q) = p, where A+ is the pseudoinverse of A.2 Here, liquidity is a
matrix, which specifies the (inverse) rate of change of the price in any direction (or more generally,
subspace) of interest. Again appealing to convex duality, we can write q = ∇G(p), where G is the

1-homogenous extension of the dual function G = C∗. Thus, we have ℓ(p) =
(
∇2C(∇G(p))

)+
, or

equivalently, ℓ(p) = ∇2G(p).
In some cases it may be more natural to start with a liquidity function and arrive at a cost

function. In examples, we often work with 2 assets, where one can start with some ℓ : [0, 1] →
R≥0 ∪ {∞} and arrive at the 1-dimensional cost c = (

∫∫
ℓ)∗. 3 As these integrals are definite,

g =
∫∫

ℓ is only determined by ℓ up to an affine function, and similarly c up to a shift and
translation. This flexibility can be utilized to determine the “most efficient” cost function dual.
This can be achieved by only allowing for the minimum deposit that ensures no-liability condition
(discussed in §4.4), which imposes g(0) = g(1) = 0. Hence the “optimal” g is given by

g(p) =

∫ p

0

∫ t

0
ℓ(s) ds dt− p

∫ 1

0

∫ t

0
ℓ(s) ds dt . (1)

We use g and ℓ heavily in examples, especially in § 6.

2The pseudoinverse is needed as the Hessian ∇2C is rank-deficient since C is always flat in the 1 direction. This
observation also explains why we can express liquidity between 2 securities in one real number, since there is only 1
free parameter in ∇2C in that case.

3We include ∞ as a possible liquidity level, as often we will want ℓ(0) = ℓ(1) = ∞, as in the LMSR and constant
product market makers. The latter is used significantly in decentralized finance.

7

3.2 Liquidity as a Hessian matrix

Above we argued that liquidity is captured by an entire matrix, the inverse Hessian of the cost
function C. In the 2-asset case, this matrix is rank 1 and only has one free parameter, aligning
with our intuition that liquidity is 1-dimensional in that case. In higher dimensions, however, one
may wonder if the extra expressivity of a matrix is needed. Let us see why it is with an example.

Consider two cost function duals on 3 assets, both based on the constant product market maker.
The first is the dual of the usual constant product market maker, and the second the sum of pairwise
constant products for all 3 pairs of assets:

G(1)(p) = −3(p1p2p3)1/3 , G(2)(p) = −2√p1p2 − 2
√
p2p3 − 2

√
p1p3 .

We will examine their liquidity as a function of p. Both functions are written in a 1-homogenous
form already, so we may simply compute their Hessians to obtain

∇2G
(1)

=
1

3(p1p2p3)2/3




2p2p3
p1

−p3 −p2
−p3 2p1p3

p2
−p1

−p2 −p1 2p1p2
p3


 ,

∇2G
(2)

=
1

2(p1p2p3)1/2




p2
√
p3+

√
p2p3

p1
−√p3 −√p2

−√p3 p1
√
p3+

√
p1p3

p2
−√p1

−√p2 −√p1 p1
√
p2+

√
p1p2

p3


 .

These matrices are rank 2, with a 0 eigenvalue in direction p.
Now let us imagine a trader wishing to purchase asset 1 in exchange for asset 3. Letting

v = (1, 0,−1)⊤, the liquidity in these two markets in this direction, meaning the price insensitivity
as a trader purchases asset 1 for 3, can be calculated simply as

v⊤∇2G
(1)

v =
2p2

(
p1
p3

+ p3
p1

+ 1
)

3(p1p2p3)2/3
= p

1/3
2

2
(
p1
p3

+ p3
p1

+ 1
)

3(p1p3)2/3
,

v⊤∇2G
(2)

v =
1√
p1p3

+

√
p1p2 +

√
p1p3

2p21
+

√
p1p3 +

√
p2p3

2p23
.

We can now see that as p2 → 0, the price of asset 2 approaches 0, the liquidity between the other
two assets is also driven to 0 for G(1). As first observed by Grugett (2023), this behavior can be
undesirable, and is alleviated by considering G(2) instead, since there the liquidity is lower bounded
by 1/

√
p1p3 regardless of the price of asset 2. Simply summarizing the liquidity or “depth” of these

markets by a single real value could miss this nuance.

4 Liquidity provisioning protocol for prediction markets

In this section, we first give intuition for why LPs can be thought of as running “parallel” markets.
We then provide the general liquidity provisioning protocol that can be implemented in prediction
markets. Next, discuss some key technical aspects of the protocol, which are essential for gaining a
deeper understanding of the design space. In Section 5.3 we show how this protocol leads to several
equivalent ways of thinking about LPs running markets in parallel. All these intuitive interpre-
tations not only enhance our understanding of how liquidity provisioning can be implemented in
prediction markets, but they also justify the framework we propose.

8

4.1 Liquidity provisioning as competing market makers

In traditional financial markets, such as continuous double-auctions, a market maker is an entity
that offers both to buy and sell an asset. Typically the buy price is lower than the sell price; the
difference comprises the bid-ask spread. Market makers earn a profit equal to the bid-ask spread
whenever both buy and sell orders are executed, while remaining even with respect to the asset. In
essence, market making is all about providing liquidity for a small premium, or “fee”, as given by
the spread. In these traditional markets, liquidity provisioning happens naturally, as often multiple
market makers coexist. Rational traders will only buy or sell from the most favorable price offered,
switching at will between different market makers.

The key idea behind our protocol therefore is to implement liquidity provisioning in the same
manner, with multiple coexisting automated market makers. That is, we seek a protocol which
implements an LP as simply another “competing” market maker, and we let traders interact with
them all at once, i.e., in parallel. How could one implement such a protocol?

There are at least two natural ways to imagine this parallel transaction proceeding (See § 5
for more). First, a trader could select a valid trade ri for the automated market maker of LP i,
resulting in a net trade r =

∑
i r

i. As detailed in § 2.4, these valid trades can be expressed as those
satisfying Ci(q

i + ri) = Ci(q
i) given a convex cost function Ci and current liability vector qi for

LP i. Second, a trader could start trading in infinitesimal amounts with each LP, each time taking
the most favorable price, and stopping at some point, yielding a net trade r. Perhaps surprisingly,
by fundamental results in convex analysis, these two approaches are identical. Taken together, we
can see that any Pareto-optimal trade leaves the combined market in a coherent state, with the
price of each LP matching the global market price.

At first glance, it might appear that a major downside of our approach is the need for traders to
interact directly with each LP, increasing the complexity of interaction required. Fortunately, one
can simplify the interface: there always exists a single aggregate cost function C that captures the
available net trades. Specifically, given the cost functions Ci defining each market maker, the valid
trades in the combined market are exactly those of their infimal convolution C =

∧
iCi. Thus, the

trader can simply choose any trade satisfying C(q + r) = C(q), and behind the scenes, the split
r =

∑
i r

i can be computed along with the corresponding fees.
To check that the infimal convolution yields a sensible protocol, let us ask how the total liquidity

in the market relates to that of the individual LPs. As justified above, we can quantify this liquidity
in the matrix (∇2C)+, or dually, ∇2G where G = C∗. By results in convex analysis, the dual of
an infimal convolution is the sum of the duals, giving G = C∗ = (

∧
iCi)

∗ =
∑

iC
∗
i =

∑
iGi. As

a consequence, the total liquidity of the combined market is ∇2G =
∑

i∇2Gi. In other words,
just as one would hope, adding another parallel market maker Ci literally adds the corresponding
liquidity ∇2Gi to the pool.

Another way to see this operation of adding liquidity is by considering the equivalent market
scoring rule (MSR) formulation of cost functions. Here running MSRs “in parallel” is the same
as adding their scoring rules SGi together, which is equivalent to using a single scoring rule SG

generated by the sum of the generating functions G =
∑

iGi. See § 5.
For example, in the two-security case, suppose two LPs want to come together and provide

liquidity using the LMSR cost functions with liquidity parameters b1 and b2. This gives a aggregate

cost function of C(q) = (C1∧C2)(q) = (b1+b2) log
(
exp

(
q1

(b1+b2)

)
+ exp

(
q2

(b1+b2)

))
. The aggregate

cost function is indeed equivalent to the convex conjugate of the sum of G1(p) = −b1H(p) = C∗
1 (p)

9

Protocol 1 General protocol as parallel market makers

1: global constant Cinit ⊆ C∗n, CLP ⊆ Cn, fee(), feei() ∈ R≥0.
2: global variables k ∈ N, {qi ∈ Rn}ki=0, {Ci ∈ CLP}ki=0

3: liability(C) := q ∈ Rn s.t. ∇C0(q
0) ∈ ∂C(q) and C(q) = 0 ▷ Price matching, no-liability

4: function Initialize(q ∈ Rn, C ∈ Cinit)
5: (k,q0, C0)← (0,q, C)
6: check q0 = liability(C0)

7: function RegisterLP(i = k + 1)
8: (k,qi, Ci)← (k + 1, 0,max)

9: function ModifyLiquidity(i ∈ N, C ∈ CLP)
10: request ri = qi − liability(C) from LP i
11: (qi, Ci)← (qi − ri, C)

12: function ExecuteTrade(r ∈ Rn)
13: q←∑k

i=0 q
i

14: check C(q+ r) = C(q) where C = ∧ki=0Ci

15: trader pays fee(r,q, C) cash in fees
16: give r to trader
17: write r =

∑k
i=0 r

i s.t. ∀i, Ci(q
i + ri) = Ci(q

i)
18: for each LP i do
19: LP i gets feei(r,q, {Ci}ki=1) fees
20: qi ← qi + ri

and G2(p) = −b2H(p) = C∗
2 (p) where H(p) = p1 log p1 + p2 log p2. Alternately, the corresponding

MSRs for the log scores are b1S, b2S where S = (log p1, log p2). The net MSR of the combined
market is hence (b1 + b2)S. This special case of cost functions in the same perspective transform
family is the analogy to Uniswap V2 in DeFi; see § 6.2. We give a more involved example in § 4.3.

4.2 General protocol

Our proposed protocol for liquidity provisioning in prediction markets is described in Protocol 1.
At a high level, the protocol works as follows. Let n be the number of securities. The market
creator acts as the initial LP, giving reserves q0 to the liquidity pool and specifying the initial
cost function C0. When an additional LP i enters, their liability vector and cost function are
initialized to the trivial values qi = 0 and Ci(q) = max(q) := maxj qj , so that they initially
provide no liquidity.4 The ModifyLiquidity function handles an LP adding, removing, or otherwise
altering their deposited liquidity: they simply replace their cost function with a different one, and
are charged up-front the minimal deposit to ensure no-liability, i.e., that they will never owe the
market maker in any future state. We provide more discussion on the no-liability condition in the
next section (§4.4). When removing all liquidity, the LP simply sets Ci = max once again, and is

4To see why this choice is correct, note that the “bid-ask spread” of Ci at q
i = 0 is maximal; every price vector

in ∆n is consistent, and any trade occurs at the worst feasible price. More technically, adding the max function to
the infimal convolution C = ∧k

i=0Ci does not change the result. Dually, the conjugate of max is the convex indicator
of ∆n, so this choice adds liquidity Gi = 0; see § 4.

10

given back their entire deposit. ExecuteTrade checks if a trade r is an allowed trade with the overall
cost function C = ∧ki=0Ci, and if so, requests an additional fee of fee(r,q, C) cash from the trader.
Under the hood, it then finds the optimal split r =

∑
i r

i into smaller trades, executing each with
the corresponding LP and doling out feei(r,q, {Ci}ki=1) in fees.

We leave axioms for the design of the fee functions for future work; see Appendix § D. One
reasonable suggestion would be to take fee(r,q, C) = β∥r∥ and feei(r,q, {Ci}ki=1) = β∥r∥ ∥ri∥∑

j ∥r∥j
for some norm ∥ · ∥ and β > 0. The form of feei here is to ensure budget balance of the fees, so
that the market maker does not owe LPs more than the trader pays.

Several questions arise from this protocol: A key step in this protocol is the computation of
liabilities. In particular, if an LP wishes to provide liquidity using C, and the current price is p,
what do they need to deposit? Does the required split r =

∑
i r

i always exist? Can the various
quantities be computed efficiently? Is there a sensible fee() function? It turns out that we have an
affirmative answer to all of these questions, at least in the case n = 2, i.e., with only two outcomes,
which we discuss over the upcoming sections 5.

4.3 Example run of the protocol

In Figure 1, we show visually how we can determine gi =
∫∫

ℓi in the case of n = 2 outcomes and
2 LPs. LP 1, in red, provides constant liquidity on [0, 0.6], while LP 2, in blue, provides constant
liquidity on [0.4, 1]. We may integrate twice (see eq 1) to find the optimal gi to be

g1(p) =

{
5
2p

2 − 2.1p p ∈ [0, 0.6]
9
10 (p− 1) p ∈ [0.6, 1]

, g2(p) =

{
−1.8p p ∈ [0, 0.4]

5
(
p− 2

5

)2 − 1.8p p ∈ [0.4, 1]
.

Taking the respective convex conjugates, we have

c1(q) =





0 q ∈ (−∞,−2.1]
(q+2.1)2

10 q ∈ [−2.1, 0.9]
q q ∈ [0.9,∞)

, c2(q) =





0 if q ∈ (−∞,−1.8]
5q2+58q+88.2

100 q ∈ [−1.8, 4.2]
q q ∈ [4.2,∞)

.

Now, we step through Protocol 1 at a high-level with the fee scheme fee(r,q, C) = β||r||1 for
β = 0.1. We round decimal values to three places.

Let the market be initialized with price p = 0.2 and LP 1 has cost function C1(q) = c1(q1 −
q2) + q2. So, at first, the market holds initial liability q0 = q1 = (−1.2,−0.1). Say a trader would
like to make a trade r = r1 = (−0.975, 0.525). The price becomes p = 0.5 after the trade and since
there is only one LP active, LP 1, they get fees $0.15. Then, q1 ← (−0.225,−0.625).

Now, suppose LP 2 wants to provide liquidity, by initializing ModifyLiquidity with C2(q) =
c2(q1−q2)+q2. LP 2 is required to deposit (1.25, 0.45) into the market maker to ensure liability q2 ←
(−1.25,−0.45), and the aggregate market has q = q1 + q2 = (−0.225,−0.625) + (−1.25,−0.45) =
(−1.475,−1.075). At this point, the market has computed C(q) = (C1 ∧ C2)(q) under the hood.
Now, whenever traders wish to exchange securities, they will trade with the aggregate market
maker C; the trade split between each LP is calculated automatically. Say a trader wants to
make the trade r = (−1.025, 1.475). The protocol computes the new price as p = 0.7. A part

5The computational efficiency will depend on the computational properties of the constituent cost functions, but
in § 6 we will see how to implement the protocol efficiently in practice for several examples.

11

0 0.2 0.4 0.6 0.8 1
0

5

10

15

p

ℓ ·
(p
)

Liquidity Functions ℓ

ℓ(p) = (ℓ1 + ℓ2)(p)

ℓ1(p) = 5
(
1[0,0.6]

)

ℓ2(p) = 10
(
1[0.4,1]

)

0 0.2 0.4 0.6 0.8 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

p

g ·
(p
)

Generating Functions g

g(p) = (g1 + g2)(p)

g1(p)

g2(p)

−4 −2 0 2 4 6
0

2

4

6

q

c ·
(q
)

Cost Functions c

(c1 ∧ c2)(q)

c1(q)

c2(q)

Figure 1: Liquidity functions and their associated generating functions.

of the trade r1 = (−0.225, 0.275) is carried out by LP 1 for which it gets a $0.05 fee, and LP
2 carries out the remainder, i.e. r2 = (−0.8, 1.2) for a $0.20 fee. We have the new liabilities as
q1 ← (−0.225,−0.625) − (−0.225, 0.275) = (0,−0.9), and q2 ← (−1.25,−0.45) − (−0.8, 1.2) =
(−0.45,−1.65). The aggregate market has q ← q1 + q2 = (−0.45,−2.55). What this means is
that if outcome 2 realizes, LP 1 is paid out $0.9 for its initial deposit of (1.2, 0.1). Note that the
LP deposits in this protocol are themselves outcome-contingent, but they change as trades occur.
Thus, the LP deposits do not express a belief on the outcome, but rather beliefs about the volume
of trade near the prices where liquidity was allocated.

4.4 Ensuring no liability

To capture no-liability, we require that the amount LP i owes the market maker of each security
should be nonpositive. Given the cost function C for LP i, we must ask i to deposit some assets
x ∈ Rn

≥0, therefore setting its liability to qi = −x, so that C(q) = C(qi) implies q ⪯ 0 for all
possible future states q.

In principle, if an LP provides C where some level set satisfies no-liability, the protocol could
compute it and request a corresponding deposit to cover the liability. More formally, if C−1(α) :=
{q ∈ Rn | C(q) = α} ⊆ Rn

≤0, i.e. every liability vector in the α-level set C−1(α) is nonpositive, the

protocol could compute this α and request (minus) the element q ∈ C−1(α) such that ∇C(q) = p,
the current price. Yet it seems more natural for the LP to specify this α. Or equivalently, we could
insist that the LP encode the valid trades in the zero level set, and the LP could submit Ĉ := C−α,
so that C−1(α) = Ĉ−1(0); this is the approach we take in Protocol 1.

Recall that for two outcomes, the constant product potential φ(q) = q1q2 has an equivalent cost

function (Chen and Pennock, 2007; Frongillo et al., 2023) given by C(q) = 1
2

(
q1 + q2 +

√
4α2 + (q1 − q2)2

)
.

Taking the 0-level set, we have q1 + q2 +
√

4α2 + (q1 − q2)2 = 0 which implies q1 + q2 < 0. Then
(q1 + q2)

2 = 4α2 + (q1 − q2)
2, which reduces to q1q2 = α2. By the first observation, we must have

q ≺ 0, giving no liability. While one could take Ĉ(q) = C(q) + 1 as well, to arrive at the same
liquidity level, one can check that C gives rise to the minimal deposit required for that level.

12

4.5 Practical considerations

When implementing Protocol 1 in practice, there is a tradeoff between LPs’ expressiveness and
the computational cost of running the protocol. This tradeoff is a strong consideration in DeFi,
as all computations have to be done on-chain; see § 6. As prediction markets are typically not
so constrained, much more expressive protocols are possible. For example, one could allow LPs
to specify their liquidity functions via polynomials of bounded degree, or weighted sums of basis
functions, or any computationally convenient class of functions that well approximate any possible
liquidity allocation.

5 Equivalence of interpretations

As we have argued informally, one can regard liquidity provisioning as (a) recruiting multiple market
makers, which then (b) process trades in parallel. We now study (b) formally, how multiple market
makers process trades in parallel, showing that four natural ways to interpret this parallelism are
all equivalent. The equivalence of (a) in these interpretations, the process of recruiting market
makers and securing deposits, is then straightforward (§ A.3).

5.1 Four interpretations of parallel market making

To begin, we revisit the interpretation of liquidity provisioning as running several market makers
in parallel, and show that four natural interpretations of this idea lead to equivalent protocols. For
convenience,6 we outline Protocol 3 in Appendix A, which is equivalent to our main Protocol 1,
but more closely resembles a scoring rule market.

In interpretations 1-3, each market maker i is specified by a cost function Ci, and a state qi.
In 3, market makers instead each have a scoring rule Si generated by a convex function Gi = C∗

i ,
and maintain a price pi. In all cases we assume the trader behaves rationally, in the sense that
the overall trade is Pareto optimal: if r, r′ are both valid trades, and r ⪰ r′, the trader chooses r.
(Recall that trades are oriented toward the trader, so here r gives the trader weakly more of each
security.)

In each interpretation, we capture the market state by the collection of liability vectors {qi ∈
Rn}i. After a trade r =

∑
i r

i, the state updates to {qi + ri}i. The set of consistent market prices
are defined to be ∂Ci(q

i) for interpretations 1-3, and an analogous definition for 4. We say the
overall market state is coherent if there is a consistent price p ∈ relint∆n for all market makers
simultaneously.

1. The trader selects a valid trade from each market maker and executes them all.
Formally, for each market maker i the trader selects ri such that Ci(q

i + ri) = Ci(q
i), for a

total trade of r =
∑

i r
i.

2. The trader continuously trades at the most favorable price and at some point
stops. Recall that we can interpret a cost function Ci as quoting a cost Ci(q

i+vi)−Ci(q
i) for

6In many ways, for blockchain applications, Protocol 3 is the more practically appealing of the two. Instead of
specifying a trade directly, the “inversion” from proposed trades to implied prices is handled off-chain by the trader.
In practice, the price function from Protocol 4 is computationally expensive; an implementation in line with Protocol 3
where traders specify a new price would alleviate this burden on the market maker, while still giving just as flexible
an interface. The remaining computation, of the implied liability vectors, is more straightforward.

13

each bundle of assets/securities vi ∈ Rn. Formally, in this interpretation, the trader specifies
a direction v ∈ Rn, and a stopping point α, and continuously purchases vdt for the smallest

price C ′
i(q

i;v) over all i, for α units of time. Here C ′
i(q

i;v) := limh→0+
Ci(q

i+hv)−Ci(q
i)

h is
the directional derivative of Ci. In other words, the trades are of the form (v−C ′

i(q
i;v)1)dt,

where we recall that the numeraire is simply 1. Crucially, we also allow the trader to take
advantage of any arbitrage opportunity that arises from this continuous trade: after the α
units of time, the trader may place trades {r̂i}i if they have negative net cost and

∑
i r̂i = 0.

3. A fully centralized market maker using the infimal convolution. This interpretation
corresponds to the rules for trade in Protocol 1. Formally, the trader selects any r ∈ Rn

such that C(q + r) = C(q), where C =
∧

iCi and q =
∑

i q
i. The central market maker

first gives r to the trader. Behind the scenes, it then computes a split r =
∑

i r
i such that

Ci(q
i + ri) = Ci(q

i), whose existence we establish below, and executes these trades in each
constituent market maker.

4. Each market maker uses a market scoring rule, and the trader is paid according
to the sum of them. Formally, each market maker has a scoring rule Si(p, y) = Gi(p) +
⟨dGp, δ

y − p⟩ where Gi = C∗
i and {dGp ∈ ∂G(p) | p ∈ relint∆n} is an arbitrary selection

of subgradients. Market maker i maintains a price vector pi ∈ relint∆n, and the trader
may choose any p̂i ∈ relint∆n, resulting in the trade ri = Si(p̂

i, ·) − Si(p
i, ·) ∈ Rn. See

Protocol 3. For the purposes of comparing interpretations, define the set of consistent prices
as {p ∈ relint∆n | ∀i Si(p, ·) = Si(p

i, ·)}.

5.2 Technical definitions

Definition 7 (Smoothness of G). We say a convex function G : ∆n → R is smooth if its 1-
homogenous extension G : Rn

≥0 is differentiable.

The key class of the functions G we restrict to is as follows.

Definition 8 (Generating function). We say G : ∆n → R is a generating function if it is convex,
smooth, and bounded on ∆n.

The following term was coined in Abernethy et al. (2013) and used similarly to our setting:
ensuring that the market price remains in the relative interior of the simplex.

Definition 9 (Pseudobarrier). A generating function G is a pseudobarrier if for any sequence
{pj ∈ relint∆n}j converging to the relative boundary of ∆n, and {qj ∈ ∂G(pj)}j, then ∥qj∥ → ∞.

A common example of a pseudobarrier is (negative) Shannon entropy G(p) =
∑

y py log py.

Another is the dual of the constant product market maker G(p) = −n(∏y py)
1/n.7

We now give the sets of cost and generating functions used in the general protocols. Let Gn
be the set of nonpositive generating functions G : ∆n → R≤0, and G∗n ⊆ Gn those which are
pseudobarriers.8 Let Cn and C∗n be the sets of conjugates of Gn and G∗n, respectively.

7To see that this dual is correct, one can observe that it is 1-homogeneous, and thus S(p, y) =
−(

∏
y′ py′)1−1/n(

∏
y′ ̸=y py). Now letting x = −S(p, ·) be the corresponding reserve vector, and computing the

product, we have
∏

y qy =
∏

y(
∏

y′ py′)1−1/n(
∏

y′ ̸=y py) = 1.
8Given any bounded generating function G, to obtain the optimal liability, we can simply replace it by the

function p 7→ G(p)− ⟨p,q⟩ where qi = G(δi).

14

5.3 Equivalence of the interpretations

Before stating the equivalence of these interpretations, we must address an important technical
point. By our assumptions on G, the resulting scoring rule vectors are unique for each price
p ∈ relint∆n; see Lemma 5 in § A. This statement can fail to hold, however, on the relative
boundary of the simplex ∆n. Taking G(p) = ∥p∥22, or any LP that does not provide infinite
liquidity at the boundary of ∆n, the resulting G will not have a unique subgradient (even modulo
1) at those boundary points, meaning we will have q,q′ ∈ Rn with p ∈ ∂C(q) ∩ ∂C(q′), but with
q′−q ̸= α1 for any α. The scoring rule S must pick just one of these vectors, meaning the scoring
rule market (interpretation 4) will be strictly less expressive than the others. Somewhat conversely,
consider G to be negative Shannon entropy, which gives rise to the log scoring rule S(p, y) = log py.
Here the liquidity does become infinite on the boundary, and consequently the scoring rule vectors
have infinite entries. These vectors cannot be captured by any q ∈ Rn, only in the limit.

For these two reasons, we restrict to relint∆n in Lemma 5. The first issue is somewhat sur-
mountable, however: if one defines dGp to be the most favorable q (modulo 1) tangent to G at a
boundary point p, then all of the Pareto optimal trades will still be available to the scoring rule
market trader. Indeed, the only trades missing are those at the maximum possible price, which is
Pareto-suboptimal for the trader anyway—consider a two outcome example when the price of the
first security is 1, the maximum possible, so that purchasing the first security at this price is weakly
worse than simply refraining from trade. Thus, while in Theorem 1 we assume there is a “log-like”
LP, typically the market creator, which keeps the price away from the boundary, in principle one
could generalize this statement using the ideas above to the case where liquidity runs out.

Theorem 1. Let Ci = G∗
i for generating functions Gi, where at least one Gi is a pseudobarrier.

Then the interpretations 1-4 above are equivalent in the following sense: given a coherent market
state, the set of valid trades is identical, and the resulting market state is coherent.

Implicit in the proof of Theorem 1 is that, in interpretations 1, 2, and 4, if the market state is
not initially coherent, it becomes coherent after a sufficiently large trade.

6 Recovering and extending DeFi protocols

6.1 Conventional differences

There are several conventional differences to note between the AMM literatures in prediction mar-
kets and those in DeFi; we discuss them here as they will help readers of either literature understand
protocols in the other. As noted previously, we consider all trades to be oriented towards the trader,
even though in the DeFi literature, trades are typically oriented toward the market maker. A trade
r ∈ Rn oriented towards the trader means that the positive coordinates of the n-dimensional vector
signify the amounts of assets given to the trader and negative coordinates signify the amounts of
assets taken away from the trader and given to the AMM.

CFMMs in DeFi tend to track the reserves held by the market maker, whereas cost function
prediction markets typically track their liabilities as a function of the eventual outcome. Hence,
a vector x of reserves corresponds to a vector −q of liabilities. We have attempted to use both
conventions, clearly marked, to keep the protocols as close to their respective literatures as possible.

With regard to prices, DeFi typically uses an “exchange-rate” version of the contract price:
the rate at which one can exchange one asset for another. As alluded to above, taking advantage

15

Protocol 2 Uniswap V2

1: global constants β.
2: global variables x ∈ R2, k ∈ N, {αi ∈ R≥0}ki=0.
3: price(x) := x2

x1+x2

4: function Initialize(x0 ∈ R2, β)
5: (k, β)← (0, β)
6: α0 ←

√
x01 · x02

7: function RegisterLP(i = k + 1)
8: (k, qi, αi)← (k + 1, 0, 0)

9: function ModifyLiquidity(i ∈ N, α′ ≥ 0)
10: p = price(x)

11: request x′ =
(
(α′ − αi)

√
1−p
p , (α′ − αi)

√
p

1−p

)
from LP i.

12: (x, αi)← (x+ x′, α′)

13: function ExecuteTrade(r ∈ R2)
14: check φ(x) = φ(x− r), where φ(x) = x1x2.

15: pay βαi

α (−r)+ to LP i, where α =
∑

i α
i.

16: x← x− r.

of the structure of cost functions, we instead adopt a normalized price convention. One can view
normalized prices p ∈ ∆n as an exchange rate between assets and the “grand bundle” 1 of all
assets. That is, pi denotes the instantaneous price, in units of 1, to purchase asset i.

Converting between the two conventions is straightforward. Given normalized prices p, one can
simply define the exchange rate between i and j as p̂ij = pi/pj . Conversely, given pairwise exchange
rates, one can define x = (1, p̂21, p̂31, . . . , p̂n1) and take p = x/∥x∥1. The conversion simplifies in
the case of two assets, as p̂12 =

p
1−p and p = p̂12/(p̂12 + 1).

6.2 Uniswap V2

Most DeFi protocols use AMMs to facilitate trades between only two assets due to transaction
gas costs. AMMs handling more assets are computationally expensive. Hence in this subsection
and the next, we similarly restrict our attention to two assets/outcomes. Uniswap V2, introduced
by Adams et al. (2020), is a commonly used AMM in the Ethereum ecosystem to trade assets
and has the functional invariant φα(x) = x1x2 = α2. In line with DeFi conventions, we track the
reserve vector x, so that x1 and x2 represent the amount of assets 1 and 2, respectively, held by
the market maker. We will still use normalized prices, so protocols mentioned here slightly differ
from the exchange rate model of price commonly seen in the DeFi literature. The normalized price
of the first asset can be computed as p = x2

x1+x2
, while the exchange rate model has p̂ = x2

x1
. We

refer the reader to Fan et al. (2022, 2023) for a detailed breakdown of Uniswap V2 mechanics.
We state the Uniswap V2 protocol and show that it is a special case of Protocol 4. Uniswap

V2 restricts how a LP can add or remove their liquidity by constraining them to use the same base
function g0 = −2

√
p(1− p) and only express their liquidity using parameter αi where gi = αig0.

Recall that from Fan et al. (2022), the bundle required to change liquidity from αi to α′ while

16

keeping the price invariant is
(
α′−αi
√
p̂

, (α′ − αi)
√
p̂
)
. Using normalized prices, this is represented as

(
(α′ − αi)

√
1−p
p , (α′ − αi)

√
p

1−p

)
in our protocol. We note that instead of skimming γ from (−r)+

for trading fees, we ask for β(−r)+ from the trader when they request the trade r. These two fee
schemes are equivalent when β = γ

1+γ .

Lemma 1. (informal) Protocol 2 is a special case of Protocol 4 for specific restrictions on Ginit.

We defer the formal statements and proofs to Appendix B. There, we show that the liability
vectors from the latter indeed satisfy the constant product invariant for our choice of generating
functions using Propositions 4,5.

6.3 Uniswap V3 and general bucketing

Uniswap V2 requires LPs to provide liquidity on the entire price space, and while this restriction
may look intuitive, it is suboptimal since liquidity allocations far from the current price may not be
used. For example, a market that trades securities on a sports game might not benefit from having
liquidity at prices in the (0, 0.1) range, say. Moreover, when LPs provide liquidity, they take on
the risk of price volatility, and ideally we would like to allow them to bound that risk. Yet on the
other hand, it is computationally challenging to maintain an infinitely flexible LP protocol.

Motivated by these concerns, DeFi’s Uniswap V3 protocol, (Adams et al., 2021), partitions the
price space, allowing each LP i to contribute a proportion αij of liquidity on any price bucket [aj , bj]
of their choosing. We refer the reader to Fan et al. (2022, 2023) for a detailed analysis of Uniswap
V3. In Appendix B.4 we show that Uniswap V3, given by Protocol 5, can be written as a special
case of our general protocol.

In this section, we generalize the idea of bucketing with regards to an arbitrary cost function C.
For ease of exposition, let us restrict again to two outcome setting. We do so as this allows for LPs
to be more expressive, depending on the number of price intervals and also keeps the complexity
of implementation from blowing up. Let G(p) indicate the corresponding dual where p2 = 1− p1.
Let ℓ(j) be its liquidity function restricted to the j-th price interval [aj , bj] of p1 and be given by

ℓ(j) = ∇2G1p1∈[aj ,bj]

Let the liability vector associated with the corresponding cost function dual for ℓ(j) be given below.
We show the workings of this in Appendix B.2.

liability(C(j)) =

(
Sg(max{aj , p1}, 1)− Sg(max{bj , p1}, 1)
Sg(min{bj , p1}, 0)− Sg(min{aj , p1}, 0)

)

where p = (p1, p2) is the current price, Sg(p, y) = g(p)+ g′(p)(y−p) and G(p) = g(p1) as discussed
in § 2.3,3.1 and C(j) = (

∫∫
ℓ(j))∗.

In Table 1, we use the above general liability vector to state the liability vectors for Uniswap
V3, as well as new bucketing protocols where we use G(p) = p1 log p1 + p2 log p2 from LMSR and
Sg(p, y) = −(p− y)2 of the Brier scoring rule as the base “shapes.” We give detailed workings for
the LMSR bucketing protocol in Appendix B.3.

17

Uniswap V3 LMSR Brier

p < aj αj

(√
1−bj
bj
−
√

1−aj
aj

0

) (
log

aj
bj

0

) (
(1− bj)

2 − (1− aj)
2

0

)

p ∈ [aj , bj] αj



√

1−bj
bj
−
√

1−p
p√

aj
1−aj

−
√

p
1−p




(
log p

bj

log 1−p
1−aj

) (
(1− bj)

2 − (1− p)2

a2j − p2

)

p > bj αj

(
0√

aj
1−aj

−
√

bj
1−bj

) (
0

log
1−bj
1−aj

) (
0

a2j − b2j

)

Table 1: Liability vectors for bucketing liquidity protocols.

6.4 New protocols

In some cases, the generalized bucketing scheme we provide in § 6.3 is still overly restrictive on
the expressivity of LPs, depending on the size of the price intervals. It may also be unnatural
for LPs to specify their liquidity allocation via discontinuous liquidity functions. Fortunately, our
general protocol easily allows one to generate more expressive restricted protocols, for particular
families of C (equivalently g for two assets) functions which still allow for efficient computations.
For example, one could use “soft” liquidity buckets where liquidity continuously “fades” in and out
around a target price aj . We describe this protocol and others in Appendix C.

In the case of n assets, one can generalize the idea of buckets, though now the task of partitioning
the d = n − 1 dimensional price space becomes nontrivial. One promising approach would be to
partition into a cell complex of convex polytopes, specifically a power diagram, (Aurenhammer,
1987). One could define indicator functions as above to allow LPs to allocate liquidity uniformly
(or according to some base shape) across each of these regions. In Appendix C we also give a
piecewise linear protocol which could be similarly adapted to these polyhedral regions, where the
linear pieces align with the regions

7 Discussion and open directions

We have given a general protocol for liquidity provisioning in prediction markets, and more broadly
any automated market making setting including decentralized finance (DeFi). In a sense that we
formalize in § 3 and § 5, this protocol is maximally expressive, though as discussed in § 4.5 and
§ 6 it can be restricted for computational convenience. One natural direction for future work is
to further explore specific restrictions, and study the tradeoffs in expressiveness and computation,
and the implications for market efficiency.

One such restriction relevant to prediction markets is to restrict to an incomplete market, where
not every outcome has its own Arrow–Debreu security. This too is a special case of our protocol,
where one restricts to cost functions that are flat outside of the incomplete subspace of possible
bundles of securities.

Beyond these directions, one particularly pressing future direction is to study the design of the
fee function. As discussed in § 6, fee functions in DeFi take the form βr+ for a constant β > 0,
where r+ denotes the vector with only the positive coordinates of r. In particular, this fee is itself
a bundle of assets, which in prediction markets corresponds to a bundle of outcome-contingent

18

securities. As we describe in § D, however, for more than 2 assets, this commonly used fee breaks
the key budget-balance property that the trader’s fee covers the sum of all the LP fees. The norm-
based fee we propose in § 4.2 does balance the budget, but is complex for LPs and may not behave
well. Designing fees with useful properties thus remains an important line of future work.

Acknowledgments

This material is based upon work supported by the Ethereum Foundation, and the National Science
Foundation under Grant Nos. IIS-2045347 and DMS-1928930, the latter while the second author
was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during
the Fall 2023 semester. Part of the research was conducted when second author was an intern at
Ethereum Foundation. We thank Davide Crapis, James Grugett, Ciamac Moallemi, Alex Solleiro,
and Bo Waggoner for several interesting discussions and ideas. We also thank Guillermo Angeris
for suggestions regarding the piecewise linear market maker.

19

References

Jacob Abernethy, Yiling Chen, and Jennifer Wortman Vaughan. Efficient market making via
convex optimization, and a connection to online learning. ACM Transactions on Economics and
Computation, 1(2):12, 2013. URL http://dl.acm.org/citation.cfm?id=2465777.

Jacob D. Abernethy, Rafael M. Frongillo, Xiaolong Li, and Jennifer Wortman Vaughan. A
General Volume-parameterized Market Making Framework. In Proceedings of the Fifteenth
ACM Conference on Economics and Computation, EC ’14, pages 413–430, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2565-3. doi: 10.1145/2600057.2602900. URL http:

//doi.acm.org/10.1145/2600057.2602900.

Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core, 2020. URL https:

//uniswap.org/whitepaper.pdf.

Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap v3
core, 2021. URL https://uniswap.org/whitepaper-v3.pdf.

Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market makers.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages 80–91,
2020.

Guillermo Angeris, Alex Evans, Tarun Chitra, and Stephen Boyd. Optimal routing for constant
function market makers. In Proceedings of the 23rd ACM Conference on Economics and Com-
putation, EC ’22, page 115–128, New York, NY, USA, 2022. Association for Computing Machin-
ery. ISBN 9781450391504. doi: 10.1145/3490486.3538336. URL https://doi.org/10.1145/

3490486.3538336.

Guillermo Angeris, Tarun Chitra, Theo Diamandis, Alex Evans, and Kshitij Kulkarni. The geom-
etry of constant function market makers. arXiv preprint arXiv:2308.08066, 2023.

F. Aurenhammer. Power diagrams: Properties, algorithms and applications. SIAM Journal
on Computing, 16(1):78–96, 1987. doi: 10.1137/0216006. URL https://doi.org/10.1137/

0216006.

Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A theory of automated
market makers in defi. Logical Methods in Computer Science, Volume 18, Issue 4, 2022. ISSN
1860-5974. doi: 10.46298/lmcs-18(4:12)2022. URL http://dx.doi.org/10.46298/lmcs-18(4:

12)2022.

Base. Gas use in ethereum transactions, 2025. URL https://docs.base.org/base-learn/docs/

introduction-to-ethereum/gas-use-in-eth-transactions/. Retrieved 2/8/2025.

G.W. Brier. Verification of forecasts expressed in terms of probability. Monthly weather review, 78
(1):1–3, 1950. ISSN 1520-0493.

Y. Chen and D.M. Pennock. A utility framework for bounded-loss market makers. In Proceedings
of the 23rd Conference on Uncertainty in Artificial Intelligence, pages 49–56, 2007.

20

http://dl.acm.org/citation.cfm?id=2465777
http://doi.acm.org/10.1145/2600057.2602900
http://doi.acm.org/10.1145/2600057.2602900
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper-v3.pdf
https://doi.org/10.1145/3490486.3538336
https://doi.org/10.1145/3490486.3538336
https://doi.org/10.1137/0216006
https://doi.org/10.1137/0216006
http://dx.doi.org/10.46298/lmcs-18(4:12)2022
http://dx.doi.org/10.46298/lmcs-18(4:12)2022
https://docs.base.org/base-learn/docs/introduction-to-ethereum/gas-use-in-eth-transactions/
https://docs.base.org/base-learn/docs/introduction-to-ethereum/gas-use-in-eth-transactions/

Yiling Chen, Mike Ruberry, and Jenn Wortman Vaughan. Cost function market makers for mea-
surable spaces. In Proceedings of the fourteenth ACM conference on Electronic commerce, pages
785–802, 2013. URL http://dl.acm.org/citation.cfm?id=2482608.

Theo Diamandis, Max Resnick, Tarun Chitra, and Guillermo Angeris. An efficient algorithm for
optimal routing through constant function market makers, 2023. URL https://arxiv.org/

abs/2302.04938.

Miroslav Dudik, Sebastien Lahaie, and David M. Pennock. A tractable combinatorial market
maker using constraint generation. In Proceedings of the 13th ACM Conference on Electronic
Commerce, EC ’12, page 459–476, New York, NY, USA, 2012. Association for Computing Ma-
chinery. ISBN 9781450314152. doi: 10.1145/2229012.2229047. URL https://doi.org/10.1145/

2229012.2229047.

Miroslav Dud́ık, Rafael Frongillo, and Jennifer Wortman Vaughan. Market Making with Decreasing
Utility for Information. Conference on Uncertainty in Artificial Intelligence, 2014.

Miroslav Dud́ık, Xintong Wang, David M. Pennock, and David M. Rothschild. Log-time prediction
markets for interval securities, 2021. URL https://arxiv.org/abs/2102.07308.

Zhou Fan, Francisco Marmolejo-Cosśıo, Ben Altschuler, He Sun, Xintong Wang, and David C.
Parkes. Differential liquidity provision in uniswap v3 and implications for contract design, 2022.
URL https://arxiv.org/abs/2204.00464.

Zhou Fan, Francisco Marmolejo-Cosśıo, Daniel J. Moroz, Michael Neuder, Rithvik Rao, and
David C. Parkes. Strategic liquidity provision in uniswap v3, 2023. URL https://arxiv.

org/abs/2106.12033.

Rafael Frongillo, Maneesha Papireddygari, and Bo Waggoner. An axiomatic characterization of
cfmms and equivalence to prediction markets, 2023. URL https://arxiv.org/abs/2302.00196.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

James Grugett. Multiple choice markets, 2023. URL https://news.manifold.markets/p/

multiple-choice-markets. Retrieved 11/14/2023.

R. Hanson. Combinatorial Information Market Design. Information Systems Frontiers, 5(1):107–
119, 2003.

Xiaolong Li and Jennifer Wortman Vaughan. An axiomatic characterization of adaptive-liquidity
market makers. In ACM EC, 2013.

Manifold. Maniswap. https://www.notion.so/Maniswap-ce406e1e897d417cbd491071ea8a0c39,
2022.

Jason Milionis, Ciamac C Moallemi, and Tim Roughgarden. Complexity-approximation trade-offs
in exchange mechanisms: Amms vs. lobs. In International Conference on Financial Cryptography
and Data Security, pages 326–343. Springer, 2023.

21

http://dl.acm.org/citation.cfm?id=2482608
https://arxiv.org/abs/2302.04938
https://arxiv.org/abs/2302.04938
https://doi.org/10.1145/2229012.2229047
https://doi.org/10.1145/2229012.2229047
https://arxiv.org/abs/2102.07308
https://arxiv.org/abs/2204.00464
https://arxiv.org/abs/2106.12033
https://arxiv.org/abs/2106.12033
https://arxiv.org/abs/2302.00196
https://news.manifold.markets/p/multiple-choice-markets
https://news.manifold.markets/p/multiple-choice-markets
https://www.notion.so/Maniswap-ce406e1e897d417cbd491071ea8a0c39

Jason Milionis, Ciamac C. Moallemi, and Tim Roughgarden. A Myersonian Framework for Op-
timal Liquidity Provision in Automated Market Makers. In Venkatesan Guruswami, editor,
15th Innovations in Theoretical Computer Science Conference (ITCS 2024), volume 287 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 81:1–81:19, Dagstuhl, Ger-
many, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-309-6.
doi: 10.4230/LIPIcs.ITCS.2024.81. URL https://drops.dagstuhl.de/entities/document/

10.4230/LIPIcs.ITCS.2024.81.

Vijay Mohan. Automated market makers and decentralized exchanges: a defi primer. Financial
Innovation, 8(20), 2022. doi: 10.1186/s40854-021-00314-5. URL http://dx.doi.org/10.1145/

3570639.

Long Nguyen. Minswap - multi-pool decentralized exchange on cardano. URL https://docs.

minswap.org/get-started/whitepaper. 2021.

A Othman and T Sandholm. Liquidity-Sensitive Automated Market Makers via Homogeneous Risk
Measures, 2011.

Abraham Othman, David M Pennock, Daniel M Reeves, and Tuomas Sandholm. A practical
liquidity-sensitive automated market maker. ACM Transactions on Economics and Computation
(TEAC), 1(3):1–25, 2013.

Evgeni Y. Ovcharov. Existence and uniqueness of proper scoring rules. J. Mach. Learn. Res., 16:
2207–2230, 2015. ISSN 1532-4435,1533-7928.

Evgeni Y. Ovcharov. Proper scoring rules and Bregman divergence. Bernoulli, 24(1):53 – 79, 2018.
doi: 10.3150/16-BEJ857. URL https://doi.org/10.3150/16-BEJ857.

R.T. Rockafellar. Convex analysis, volume 28 of Princeton Mathematics Series. Princeton Univer-
sity Press, 1997.

Jan Christoph Schlegel, Mateusz Kwaśnicki, and Akaki Mamageishvili. Axioms for constant func-
tion market makers, 2022. URL https://arxiv.org/abs/2210.00048.

Thomas Strömberg. A study of the operation of infimal convolution. PhD thesis, Lule tekniska
universitet, 1994.

Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. Sok: Decentralized exchanges (dex)
with automated market maker (amm) protocols. ACM Computing Surveys, 55(11):1–50, February
2023. ISSN 1557-7341. doi: 10.1145/3570639. URL http://dx.doi.org/10.1145/3570639.

Ariel Zetlin-Jones, Bryan Routledge, and Yikang Shen. Automated exchange economies. 2024.
URL https://www.andrew.cmu.edu/user/azj/files/rsz_slides.pdf.

22

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.81
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.81
http://dx.doi.org/10.1145/3570639
http://dx.doi.org/10.1145/3570639
https://docs.minswap.org/get-started/whitepaper
https://docs.minswap.org/get-started/whitepaper
https://doi.org/10.3150/16-BEJ857
https://arxiv.org/abs/2210.00048
http://dx.doi.org/10.1145/3570639
https://www.andrew.cmu.edu/user/azj/files/rsz_slides.pdf

Protocol 3 General protocol as parallel scoring rule markets

1: global constant Ginit ⊆ G∗, GLP ⊆ G, fee(), feei() ∈ R≥0.
2: global variables k ∈ N, p ∈ relint∆n, {Gi ∈ GLP}ki=0

3: price(G,q) := (∇G)−1(q)
4: liability(G, p) := SG(p, ·) where SG(p, ·) = dGp + (G(p)− ⟨dGp,p⟩)1.
5: function Initialize(p ∈ relint∆n, G ∈ Ginit)
6: (k,p, G0)← (0,p, G)
7: market creator holds −SG0(p, ·) in reserve

8: function RegisterLP(i = k + 1)
9: (k,Gk)← (k + 1, 0)

10: function ModifyLiquidity(i ∈ N, G′ ∈ GLP)
11: request SGi(p, ·)− SG′(p, ·) from LP i
12: Gi ← G′

13: function ExecuteTrade(p̂ ∈ relint∆n)
14: r← SG(p̂, ·)− SG(p, ·) where G =

∑
iGi

15: pay fee(r,p, G) cash
16: execute trade r
17: for each LP i do
18: ri ← SGi(p̂, ·)− SGi(p, ·).
19: pay feei(r,p, {Gi}ki=1) in fees to LP i
20: qi ← qi + ri

A Proofs From Section 5 and an alternative protocol

As some readers might be more familiar with Scoring Rule Markets (Hanson, 2003), we give Proto-
col 3 as an alternative to Protocol 1. Here we keep track of the market price p instead of liability
vector q and use scoring rules instead of cost functions. We prove in Appendix A.3 that these two
protocols are essentially equivalent under some mild conditions.

A.1 Technical lemmas

We begin with some standard facts from convex analysis.

Proposition 1 (Rockafellar (1997, Theorem 23.5)). Let f : Rn → R ∪ {∞} be a closed convex
function and f∗ its conjugate. Then for all x,x∗ ∈ Rn the following are equivalent:

1. x∗ ∈ ∂f(x)

2. x ∈ ∂f∗(x∗)

3. f(x) + f∗(x∗) = ⟨x∗,x⟩

Proposition 2. Let fi : Rn → R∪{∞} be convex for i ∈ {1, . . . , k} such that
⋂

i relint dom fi ̸= ∅.
Let f =

∑
i fi. Then f∗ =

∧
i f

∗
i , and the infimum in ∧ in the definition of f∗ is always attained.

Moreover, for v ∈ relint dom f∗, and any split v =
∑

i v
i, we have f∗(v) =

∑
i f

∗
i (v

i) if and only
if
⋂

i ∂fi(v
i) ̸= ∅.

23

Proof. The first statement follows from Rockafellar (1997, Theorem 16.4); we will prove the second.
First suppose f∗(v) =

∑
i f

∗
i (v

i) for v ∈ relint dom f∗ and v =
∑

i v
i. From Rockafellar (1997,

Theorem 23.4), ∂f∗(v) ̸= ∅. Now Strömberg (1994, Theorem 3.6) gives
⋂

i ∂f
∗
i (v

i) = ∂f∗(v) ̸= ∅.
9

For the converse, let x ∈ ⋂i ∂f
∗
i (v

i) and define v =
∑

i v
i. From Proposition 1, vi ∈ ∂fi(x) for

all i. Now Rockafellar (1997, Theorem 23.8) gives v =
∑

i v
i ∈ ∂f(x). Proposition 1 again implies

gives f∗(v) = ⟨x,v⟩ − f(x) =
∑

i

〈
x,vi

〉
−∑i fi(x) =

∑
i f

∗
i (v

i).

We now prove several technical lemmas we use in the proof of Theorem 1.

Lemma 2. Let G be a pseudobarrier and C = G∗. Then for all q, q̂ ∈ Rn we have ∂C(q) ⊆
relint∆n and q̂ ⪰̸ q =⇒ C(q̂) > C(q).

Proof. Let p ∈ ∂C(q). By Proposition 1, q ∈ ∂G(p). If p /∈ relint∆n, then we have an interior
sequence {pj}j such that pj →j p and subgradients qj →j q, violating the definition of a pseudo-
barrier. For this p, we have py > 0 for all y ∈ {1, . . . , n}. As q̂ ⪰̸ q, we have q̂y ≥ qy for all y, with
at least one inequality strict. Thus by the subgradient inequality, C(q̂) − C(q) ≥ ⟨p, q̂− q⟩ > 0,
as desired.

The following lemma is essentially a restatement of results due to Ovcharov (2018, 2015). It
says that subgradients of generating functions G are unique modulo 1.

Lemma 3. Let G be a generating function. Then for all p ∈ ∆n, and all q,q′ ∈ ∂G(p), there
exists α ∈ R such that q′ = q+ α1.

Proof. Let q ∈ ∂G(p). We will show q̂ ∈ ∂G(p), where q̂ = q+(G(p)−⟨q,p⟩)1. By construction,
⟨q̂,p⟩ = ⟨q,p⟩+G(p)− ⟨q,p⟩ = G(p). For all x ∈ Rn

≥0 \ {0}, we have

G(x) = ∥x∥1G(x/∥x∥1)
≥ ∥x∥1 (G(p) + ⟨q,x/∥x∥1 − p⟩)
= ∥x∥1 (G(p) + ⟨q̂,x/∥x∥1 − p⟩)
= ∥x∥1 (⟨q̂,x/∥x∥1⟩+G(p)− ⟨q̂,p⟩)
= ⟨q̂,x⟩
= G(p)− ⟨q̂,p⟩+ ⟨q̂,x⟩
= G(p) + ⟨q̂,x− p⟩ .

Thus, every element of ∂G(p), up to a shift by 1, is an element of ∂G(p). As the latter is a singleton
set, by assumption on G, the result follows.

Lemma 4. Let C =
∧

iCi where C∗
i are generating functions.

Then for all q ∈ Rn, the infimum in the definition of C(q) is attained, and C(q) =
∑

iCi(q
i)

if and only there exists p ∈ ∆n such that p ∈ ∂Ci(q
i) for all i.

Proof. We have domC∗
i = ∆n and domCi = Rn for all i, so Proposition 2 applies.

9As needed for that result to apply, the assumption that there exists some x ∈
⋂

i relint dom fi implies that f∗
i is

bounded from below by the same affine function, namely one with gradient x.

24

Lemma 5. Let C = G∗ where G is a generating function. For p ∈ relint∆n, let S(p, y) =
G(p)− ⟨dGp, δ

y − p⟩, where {dGp ∈ ∂G(p) | p ∈ relint∆n} is a selection of subgradients.
Then for all p ∈ relint∆n and q ∈ Rn, we have (p ∈ ∂C(q) ∧ C(q) = 0) ⇐⇒ q = S(p, ·). In

particular, {S(p, ·) | p ∈ relint∆n} = {q ∈ C−1(0) | ∂C(q) ∩ relint∆n ̸= ∅}.

Proof. Let q = S(p, ·). Then C(q) = C(dGp+(G(p)−⟨dGp,p⟩)1) = G(dGp)+G(p)−⟨dGp,p⟩ =
0 by Proposition 1. Furthermore, by the same theorem, dGp ∈ ∂G(p) ⇐⇒ p ∈ ∂C(dGp), and
by 1-invariance, ∂C(dGp) = ∂C(S(p, ·)). Thus, p ∈ ∂C(q).

Now let q such that C(q) = 0, and take p ∈ ∂C(q); we will show q = S(p, ·). By Proposition 1,
q ∈ ∂G(p). From Lemma 3, we have ∂G(p) = {dGp + α1 | α ∈ R}. Thus q = dGp + α1 for some
α ∈ R. Now 0 = C(q) = C(dGp + α1) = C(dGp) + α = ⟨dGp,p⟩ − G(p) + α by Proposition 1.
Thus α = G(p)− ⟨dGp,p⟩, and we have q = dGp + (G(p)− ⟨dGp,p⟩)1 = S(p, ·), as desired.

A.2 Proof of Theorem 1

Proof. We will show that 1 and 2 are each equivalent to 3, and 4 is equivalent to 1. For each, let
{qi}i be the current market state, q =

∑
i q

i, p a consistent price, and C =
∧

iCi. From Lemma 4,
price consistency implies C(q) =

∑
iCi(q

i), i.e., the qi vectors achieve the infimum in the definition
of the infimal convolution.

1. A trade for 3 satisfies the conditions for 1, so we only need to show that this choice is Pareto
optimal for the trader; coherence will then follow by Lemma 4. More formally, let {ri}i satisfy
Ci(q

i + ri) = Ci(q
i) for all i. Letting r =

∑
i r

i, from the definition of infimal convolution,
C(q + r) ≤ ∑iCi(q

i + ri) =
∑

iCi(q
i) = C(q). We wish to show that r is Pareto optimal

if and only if C(q + r) = C(q), or equivalently, that r is Pareto suboptimal if and only if
C(q+ r) < C(q).

Suppose first that we had some r̂ ⪰̸ r such that Ci(q
i + r̂i) = Ci(q

i) where r̂ =
∑

i r̂
i. From

the same argument as above, we have C(q + r̂) ≤ ∑iCi(q
i + r̂i) =

∑
iCi(q

i) = C(q). By
Lemma 2, C(q+r̂) > C(q+r), giving C(q+r) < C(q). Conversely, suppose C(q+r) ̸= C(q),
which from the inequality above implies C(q+r) < C(q). Let r̂ = r+(C(q)−C(q+r))1 ⪰̸ r.
By 1 invariance, we have C(q + r̂) = C(q). From part (3) of the proof below, there exists
a split r̂ =

∑
i r̂

i such that of Ci(q
i + r̂i) = Ci(q

i). Thus, r was not a Pareto-optimal total
trade.

2. Let r be a trade from interpretation 3, so that C(q+ r) = C(q) where C =
∧

iCi. Set v = r
and α = 1 for interpretation 2. Let αi ≥ 0 be the amount of r purchased from cost function
i, and βi ∈ R the total cost, so that the net trade from cost function i is ri = αir−βi1. Then
we have

∑
i αi = 1, so that the net trade is r− β1 where β =

∑
i βi. By definition of ri, the

cost of trades, and the 1-invariance of Ci, we have Ci(qi + ri) = Ci(qi).

If β = 0 we are done. Otherwise, as r is Pareto optimal from part (1) above, we must have
β > 0.

From part (3) of the proof below, there exists a set of trades {r̂i}i with
∑

i r̂i = r such that
Ci(qi + r̂i) = Ci(qi) = Ci(qi + ri − βi1) for all i. Thus, from state {q′

i}i := {qi + ri − βi1}i,

25

the trades {r′i}i := {r̂i − ri}i are an arbitrage, with
∑

i r
′
i = r− r = 0 and net cost

∑

i

Ci(q
′
i + r′i)− Ci(q

′
i) =

∑

i

Ci(qi + r̂i − βi1)− Ci(qi + ri − βi1)

=
∑

i

Ci(qi + r̂i − βi1)− Ci(qi + r̂i)

= −
∑

i

βi = −β < 0 .

For the converse, let r be any net trade from the continuous trading process, and β ≤ 0
the optimal net cost from any arbitrage. By part (1) and the argument above, we have
β = C(q)− C(q+ r); taking r̂ = r+ (C(q)− C(q+ r))1,

we again split r̂ into {r̂i}i and construct an arbitrage {r′i}i := {r̂i − ri}i which achieves net
cost C(q+ r)− C(q) = −β.

3. Let r such that C(q+r) = C(q). We must show that there exist {ri}i such that Ci(q
i+ri) =

Ci(q
i) and r =

∑
i r

i. From the definition of infimal convolution, C(q+ r) = inf{∑iCi(v
i) |∑

i v
i = q+ r}. By Lemma 4, this infimum is attained by some {vi}i. Define ri := vi−qi +

(Ci(q
i)−Ci(v

i))1. For the first condition, Ci(q
i+ri) = Ci(v

i+(Ci(q
i)−Ci(v

i))1) = Ci(q
i).

For the second,

∑

i

ri =
∑

i

vi −
∑

i

qi +
∑

i

(Ci(q
i)− Ci(v

i))1

= (q+ r)− q+

(∑

i

Ci(q
i)−

∑

i

Ci(v
i)

)
1

= r+ (C(q)− C(q+ r))1 = r .

Coherence again follows from Lemma 4.

4. We will show equivalence to interpretation 1.

Let αi = Ci(q
i) for all i, so that C(qi − α1) = 0. By Lemma 5, we may therefore write

qi = S(pi, ·) + αi1. From Lemma 4, we again have C(q) =
∑

iC(qi). From Lemma 5 again,
and 1-invariance,

{ri ∈ Rn | Ci(q
i + ri) = Ci(q

i)}
= {ri ∈ Rn | Ci(q

i + ri − αi1) = Ci(q
i − αi1)}

= {ri ∈ Rn | Ci(Si(p
i, ·) + ri) = Ci(Si(p

i, ·))}
= {ri ∈ Rn | Ci(Si(p

i, ·) + ri) = 0}
= {q̂i − S(pi, ·) | Ci(q̂

i) = 0}
= {S(p̂i, ·)− S(pi, ·) | p̂i ∈ relint∆n} .

We conclude that the possible trades {ri}i in interpretation 1, such that Ci(q
i + r̂i) = Ci(q

i)
for all i, are exactly the same as the trades {Si(p̂

i, ·)− Si(p
i, ·)}i allowed in interpretation 4;

we have simply reparameterized the trades by {p̂i}i.

26

A.3 Equivalence of the full protocols and practical considerations

Theorem 1 tells us that the process of trading in Protocols 1 and 3 are the same. The equivalence
of the rest of the protocol follows from Lemma 5, as liability(C) = SG(p, ·) where p ∈ ∂C(q).

The two-outcome case is similar; we need only verify the translation from G and C to thei
1-dimensional counterparts. Letting G(p) = g(p1), we have G(x) = (x1+x2)g(x1/(x1+x2)) which
is differentiable. Lemma 3 now gives ∂G(p) = {(g′(p1), 0) + α1 | α ∈ R} and thus SG(p, ·) =
dGp + (G(p) + ⟨dGp,p⟩)1 = (g′(p1), 0) + (g(p1) − p1g

′(p1))1 = liability(g, p1). Computing the
conjugate, we have

G∗(q) = sup
p∈∆2

⟨p,q⟩ −G(p)

= sup
p∈[0,]1

pq1 + (1− p)q2 − g(p)

=

(
sup

p∈[0,1]
p(q1 − q2)− g(p)

)
+ q2

= g∗(q1 − q2) + q2 ,

as desired. Finally, to verify price(·), note that c′ = (g′)−1 whenever both derivatives are defined.
By assumption on Ginit, any argument to price is both differentiable and strictly convex, and thus
c is differentiable. We have now established Proposition 3.

B Proofs and additional working from Section 6

B.1 Proofs related to Uniswap V2 in Section 6

Before we analyze Uniswap, we introduce a simpler version of Protocol 1 for the two outcome
case. It helps us reason about liquidity functions in a much convenient way. The above discussed
observations in Appendix A aids us in writing Protocol 4. Reminder that for two outcome case, we
use g, c instead of G,C. Refer to section 3.1 for a revision. The fact that C(Sg(p, ·)) = 0 combined
with the fact that ∇C(Sg(p, ·)) = (p, 1 − p) means that one can replace liability(C) in Protocol 1
line 3 with liability(g, p) := Sg(p, ·), where p is the current price of asset 1. Similarly, the trade
check (line 14) and optimal split (line 17) in Protocol 1 can be done more straightforwardly using
Sg(p, ·), without the need to compute infimal convolutions explicitly. We skip the formal proof of
the equivalence of Protocols 1 and 4 to § 5, as it readily follows from a slightly weaker equivalence
between the corresponding n-asset protocols (Theorem 1).

Let G be the set of functions g : [0, 1]→ R≤0 which are convex, continuously differentiable, and
bounded. Let G∗ ⊆ G be those which additionally have |g′(p)| → ∞ as p→ 0 or p→ 1.

Proposition 3. Let Ginit ⊆ G∗ be a set of functions which are strictly convex. Then for n = 2
Protocol 1 is equivalent to Protocol 4 for the choices ci = g∗i where Ci(q) = ci(q1 − q2) + q2.

Proposition 4. For Ginit = {αg0 | α > 0}, GLP = {αg0 | α ≥ 0} where g0(p) = −2
√
p(1− p) in

Protocol 4, liability(g, p) = −α
(√

1−p
p ,
√

p
1−p

)⊤
for g = αg0. The vector x of reserves in Protocol

2 satisfies x1 · x2 = α2 for some α > 0 iff q = liability(g, price(g, p)), where x = −q.

27

Protocol 4 General two-asset protocol via liquidity functions

1: global constant Ginit ⊆ G∗, GLP ⊆ G, fee(), feei() ∈ R≥0

2: global variables k ∈ N, {qi ∈ R2}ki=0, {gi ∈ GLP}ki=0

3: price(g,q) := (g′)−1(q1 − q2)
4: liability(g, p) := Sg(p, ·) where Sg(p, ·) = (g′(p), 0) + (g(p)− p · g′(p))1.
5: function Initialize(q ∈ R2, g ∈ Ginit) ▷ Equivalently, the market creator can specify ℓ = g′′

6: (k,q0, g0)← (0,q, g)
7: check q0 = liability(g0, price(g0,q))

8: function RegisterLP(i = k + 1)
9: (k,qi, gi)← (k + 1, 0, 0)

10: function ModifyLiquidity(i ∈ N, g ∈ GLP) ▷ Equivalently, the LP can specify ℓ = g′′

11: request ri = qi − liability(g, price(g0,q
0)) from LP i

12: (qi, gi)← (qi − ri, g)

13: function ExecuteTrade(r ∈ R2)
14: p′ ← price(

∑k
j=0 gj ,

∑k
i=0 q

i + r) ▷ The price after this trade

15: check
∑k

i=0 q
i + r = liability(

∑k
j=0 gj , p

′)
16: trader pays fee(r,q, g) cash in fee
17: Give r to trader
18: for each LP i do
19: ri ← liability(gi, p

′)− qi.
20: LP i gets feei(r,q, {gi}ki=1) fees
21: qi ← qi + ri

Proof. Observe that any change in liability vector in the ModifyLiquidity or Initialize phases results
in a liability vector that takes the form liability(g, p) for some g ∈ GLP, p ∈ [0, 1]. Let this g(p) =
αg0(p) = −2α

√
p(1− p) and thereby g′(p) = −α 1−2p√

p(1−p)
. So,

liability(g, p) = (g(p)− p · g′(p)1+

(
g′(p)
0

)

= α

((
−2
√

p(1− p) + p
1− 2p√
p(1− p)

)
1−

(
1−2p√
p(1−p)

0

))
= α


−

√
1−p
p

−
√

p
1−p


 .

Hence if q = liability(g, price(g, p)),

(
q1
q2

)
= liability(g, price(g, p)) = −α



√

1−price(g,p)
price(g,p)√
price(g,p)

1−price(g,p)




which implies q1 · q2 = α2 = x1 · x2.
For the if direction, price of market at q is given by (g′)−1(q1 − q2), call this p.

q1 − q2 = g′(p) = −α 1− 2p√
p(1− p)

28

Solving this, we get that p = q2
q1+q2

. So,

liability(g, price(g, p)) = liability(g,
q2

q1 + q2
)

= α


−

√
q1
q2

−
√

q2
q1


 =

(
q1
q2

)
.

The last line uses the fact that q1 · q2 = α2.

Proposition 5. Protocol 2 is equivalent to Protocol 4 for Ginit = {αg0 | α > 0}, GLP = {αg0 | α ≥
0} where g0(p) = −2

√
p(1− p), fee(r,q, g) = βr+ and feei(r,q, {gi}i) = βαi

α r+ for β > 0.

Proof. Showing that Protocol 4 gives Protocol 2, for the choices of g specified, involves showing the
equivalence of three specific components. That is, we wish to show that the initialization check in
Line 7 of Protocol 4 is satisfied and that the request vectors in ModifyLiquidity and ExecuteTrade
routines match.

First, we note that modifying x preserves the invariant x1 · x2 = α2 for some α in Protocol
2. As shown in the proof of Proposition 4, (g′)−1(q1 − q2) = price(g0,q) =

q2
q1+q2

where q = −x,
showing that the Uniswap price function is a special case.

For the initialization phase, x01·x02 = (α0)2 and Proposition 4 give us that liability(g0, price(g0, q
0)) =

q0 hence satisfying the check. By induction, this statement holds for all states q i.e. q =
liability(g, price(g,q)).

A liquidity change of αi to α′ at price p reflects a change of gi from −2 · αi
√
p(1− p) to

ĝ = −2 · α′√p(1− p) in Uniswap V2. The quantity of assets requested by Protocol 4 is given by

ri = −(liability(ĝ, p)− qi) = −(liability(ĝ, p)− liability(gi, p))

= (α′ − αi)



√

1−p
p√
p

1−p


 = x′

Now, we show that the check in Line 19 of Protocol 4 for the given g gives us the condition
x1 · x2 = (x1 − r1) · (x2 − r2) that appears in Uniswap V2.

Let q =
∑

i q
i and r =

∑
i r

i. The check in Protocol 4 can be rewritten as

q+ r = liability




k∑

j=0

gj , p
′




= liability




k∑

j=0

gj , price




k∑

j=0

gj ,q+ r






From this, by applying Proposition 4, (q1 + r1)(q2 + r2) = (−x1 + r1)(−x2 + r2) = α2 = x1 · x2.
Again the note the difference in sign conventions for liability and reserves.

The last fact we want to show to complete the proof is that ri = αi

α r for Uniswap V2. This can
be obtained by observing that r = liability(g, p′)−q = liability(g, p′)− liability(g, p) from Proposition

4 and g = αi

α gi being true for Uniswap V2.

29

B.2 Liquidity vectors for general bucketing mechanism

We are given, for a specified g, an ℓ(j) function of the form below,

ℓ(j)(p) = g′′(p)1[aj ,bj](p) =





0 p < aj

g′′(p) p ∈ [aj , bj]

0 p > bj

.

Then, (ĝ(j))′(p)′ is given by,

(ĝ(j))′(p) =

∫ p

0
ℓ(j)(s) ds =





0 p < aj

g′(p)− g′(aj) p ∈ [aj , bj]

g′(bj)− g′(aj) p > bj

.

We integrate from 0 to p to see that

ĝ(j)(p) =

∫ p

0
(ĝ(j))′(s)ds =





0 p < aj

g(p)− g(aj)− g′(aj)(p− aj) p ∈ [aj , bj]

(g′(bj)− g′(aj))(p− bj) + g(bj)− g(aj)− g′(aj)(bj − aj) p > bj

.

Then,

g(j)(p) = ĝ(j)(p)− pĝ(j)(1)

=





p(g(aj)− g(bj)− g′(aj)(aj − 1) + g′(bj)(bj − 1)) p < aj

g(p) + g(aj)(p− 1)− pg(bj)− ajg
′(aj)(p− 1) + pg′(bj)(bj − 1) p ∈ [aj , bj]

(p− 1)(g(aj)− g(bj)− ajg
′(aj) + bjg

′(bj)) p > bj

.

From this we can calculate the liability vector as follows

liability(g(j), p) = (g′(p), 0) + (g(p)− pg′(p))1

=





(
g(aj)− g(bj)− g′(aj)(aj − 1) + g′(bj)(bj − 1)

0

)
p < aj

(
g(p)− g(bj)− g′(p)(p− 1) + g′(bj)(bj − 1)

g(p)− g(aj)− pg′(p) + ajg
′(aj)

)
p ∈ [aj , bj]

(
0

g(bj)− g(aj) + ajg
′(aj)− bjg

′(bj)

)
p > bj

=





(
S(aj , 1)− S(bj , 1)

0

)
p < aj

(
S(p, 1)− S(bj , 1)

S(p, 0)− S(aj , 0)

)
p ∈ [aj , bj]

(
0

S(bj , 0)− S(aj , 0)

)
p > bj

=

(
Sg(max{aj , p}, 1)− Sg(max{bj , p}, 1)
Sg(min{bj , p}, 0)− Sg(min{aj , p}, 0)

)

where S(p, y) = g(p) + g′(p)(y − p).

30

B.3 Bucketing scheme for logarithmic market scoring rule (LMSR)

Here, we apply the techniques of the previous section to consider an interesting new protocol. What
if we used g from LMSR but with a bucketing scheme similar to Uniswap V3? That is, LPs can
deposit according to g(p) = p log p + (1 − p) log(1 − p) on discrete buckets analogous to what we

see in Uniswap V3. We see that g′(p) = log p− log(1− p) = log
(

p
1−p

)
, so

g(j)(p) =





p log
aj
bj

p < aj

p log p
bj

+ (1− p) log (1−p)
(1−aj)

p ∈ [aj , bj]

(1− p) log
(1−bj)
(1−aj)

p > bj

.

liability(g(j), p) = (g′(p), 0) + (g(p)− pg′(p))1

=





(
log

aj
bj

0

)
p < aj

(
log p

bj

log (1−p)
(1−aj)

)
p ∈ [aj , bj]

(
0

log
(1−aj)
(1−bj)

)
p > bj

.

B.4 Discussion on Uniswap V3

Readers familiar with the original protocol may recognize Protocol 5 as Uniswap V3 mechanics but
with minor changes coming from using normalized prices. Line 14 comes from Fan et al. (2022)’s
analysis of Uniswap V3, and Line 19 comes from the shifted reserve curve characteristic of Uniswap
V3 as seen in both Fan et al. (2022) and Adams et al. (2021). For clarity, we want to reiterate
that Fan et al. (2022) uses an exchange rate price p̂, and we use its normalized version p. The two
quantities are related by p̂ = p

1−p .

Proposition 6. For Ginit = {
∑

j αjg
(j) | αj > 0}, GLP = {∑j αjg

(j) | αj ≥ 0} where

g(j)(p) =





p(
√

1−bj
bj
−
√

1−aj
aj

) if p ≤ aj

−2
√
p(1− p) + p

√
1−bj
bj

+ (1− p)
√

aj
1−aj

if aj ≤ p ≤ bj

(1− p)(
√

aj
1−aj

−
√

bj
1−bj

) if p ≥ bj

,

the vector q of liability in Protocol 4 always satisfies
(
x1 + αj

√
1−bj
bj

)
·
(
x2 + αj

√
aj

1−aj

)
= α2

j for

some αj > 0, where x = −q.

Proof. Observe that any change in liability vector in the ModifyLiquidity or Initialize phases results
in a liability vector that results in the vector taking the form liability(g, p) for some g ∈ GLP,
p ∈ [0, 1]. Let this g be αjg

(j)(p) where αj is the total liquidity in jth price interval which is
∑

i α
ij

31

Protocol 5 Uniswap V3

1: global constants β, m, {Bj = [aj , bj]}mj=0.

2: global variables x ∈ R2, k ∈ N, {αij ∈ R≥0}i∈{0,...,k},j∈{0,··· ,m}
3: function price(x ∈ R2)

4: return
x2+αj

√
aj

1−aj

x1+αj

√
1−bj
bj

+x2+αj

√
aj

1−aj

5: function Initialize(x ∈ R2, α > 0, β)
6: (k, β)← (0, β)
7: ModifyLiquidity(0,x, α, [0, 1]) ▷ We technically have to split this into function call for each

price interval.

8: function RegisterLP()
9: k ← k + 1

10: αkj ← 0,∀j ∈ {0, . . . ,m}
11: return k ▷ ID of the new LP

12: function ModifyLiquidity(i ∈ N, α′ ≥ 0, j ∈ {0, . . . ,m})
13: p = price(x)

14: request x′ =





(
(α′ − αij)

(√
1−aj
aj
−
√

1−bj
bj

)
, 0
)

if p < aj(
0, (α′ − αij)

(√
bj

1−bj
−
√

aj
1−aj

))
if p > bj(

(α′ − αij)
(√

1−p
p −

√
1−bj
bj

)
, (α′ − αij)

(√
p

1−p −
√

aj
1−aj

))
if p ∈ [aj , bj]

15: (x, αij)← (x+ x′, α′)

16: function ExecuteTrade(r ∈ R2)
17: Let p = price(x), p′ = price(x− r) 10

18: Let l, u be such that al ≤ p ≤ bl and au ≤ p′ ≤ bu.
19: check

1

(
∑k

i=0 αil)2

x1 +

k∑
i=0

α
il

√
1 − bl

bl

x2 +

√
al

1 − al

k∑
i=0

α
il

 =
1

(
∑k

i=0 αiu)2

x1 − r1 +

k∑
i=0

α
iu

√
1 − bu

bu

x2 − r2 +

√
au

1 − au

k∑
i=0

α
iu



20: pay β
∑

j α
ij∑

j

∑
o α

oj (−r)+ to each LP i where j sums over buckets in [Bl, Bu].▷ WLOG assume

that the Bu bucket comes later than Bl

21: x← x− r

32

in Protocol 5. We have

g′(p) =





αj(
√

1−bj
bj
−
√

1−aj
aj

) if p ≤ aj

αj(− 1−2p√
p(1−p)

+
√

1−bj
bj
−
√

aj
1−aj

) if aj ≤ p ≤ bj

(
√

bj
1−bj

−
√

aj
1−aj

) if p ≥ bj

Solving for liability(g, p) = (g(p)− p · g′(p)1+

(
g′(p)
0

)
for these three cases gives us

liability(g, p) =





αj



√

1−bj
bj
−
√

1−aj
aj

0


 if p ≤ aj

αj


−

√
1−p
p +

√
1−bj
bj

−
√

p
1−p +

√
aj

1−aj


 if aj ≤ p ≤ bj

αj


 0√

aj
1−aj

−
√

bj
1−bj

)


 if p ≥ bj

.

In each of these cases, with a bit of algebra we can see that
(
q1 − αj

√
1− bj
bj

)
·
(
q2 − αj

√
aj

1− aj

)
=

(
x1 + αj

√
1− bj
bj

)
·
(
x2 + αj

√
aj

1− aj

)
= α2

j ,

as q in Protocol 4 is liability which is negative of reserves in Protocol 5.

Proposition 7. Protocol 5 is equivalent to Protocol 4 for Ginit = {
∑

j αjg
(j) | ∀j αj > 0}, GLP =

{∑j αjg
(j) | ∀j αj ≥ 0} where

g(j)(p) =





p(
√

1−bj
bj
−
√

1−aj
aj

) if p ≤ aj

−2
√

p(1− p) + p
√

1−bj
bj

+ (1− p)
√

aj
1−aj

if aj ≤ p ≤ bj

(1− p)(
√

aj
1−aj

−
√

bj
1−bj

) if p ≥ bj

.

Proof. To show that Protocol 4 gives us Protocol 5, for the choices of g specified, involves showing
three specific components are equivalent. They include showing that the initialization check satisfies
and the request vectors in ModifyLiquidity and ExecuteTrade routines match.

We saw αj to mean total liquidity in jth interval i.e.
∑k

i=0 α
ij and let g(p) = αjg

(j). Firstly,
to show the initialization check, we derive that

(g′)−1(q1 − q2) = (g′)−1(x2 − x1) =
x2 + αj

√
aj

1−aj

x1 + αj

√
1−bj
bj

+ x2 + αj

√
aj

1−aj

.

10We also note that price in Uniswap V3 is not calculated on demand like we do here but is a state variable thats
maintained throughout the implementation. Uniswap V3 also implements the Line 19 by passing through all price
ranges consecutive to p and checking which price interval satisfies this check. We abstract away from this to avoid
being caught up in technicalities as this is not the main problem we tackle.

33

We consider only the case when this price falls in a bucket j as for all other buckets, (g′)−1 would
not give a definitive result.

liability(g0, price(g0, q
0)) = αj




−

√√√√√
x0
1+αj

√
1−bj
bj

x0
2+αj

√
aj

1−aj

+
√

1−bj
bj

−

√√√√√
x0
2+αj

√
aj

1−aj

x0
1+αj

√
1−bj
bj

+
√

aj
1−aj




= αj



−

x0
1+αj

√
1−bj
bj

αj
+
√

1−bj
bj

−
x0
2+αj

√
aj

1−aj

αj
+
√

aj
1−aj




=

(
−x01
−x02

)
=

(
q01
q02

)

The first two steps are a result of Proposition 6.
Now, we show that the quantity of assets requested from a LP to change the liquidity level from

αij to α′ given by Line 14 in Protocol 5 is equivalent to Line 11 of Protocol 4.
We first note that the price p, does not change in this operation, as liquidity must be added

by keeping the price constant. Another way to see it is that price(g0,q
0) remains unchanged. A

liquidity change of αij to α′ at price p ∈ Bj reflects a change of gi from αijg(j) to ĝ = α′g(j) in
Uniswap V3. The quantity of asset requested by Protocol 4 is given by

−(liability(ĝ, p)− qi) = liability(gi, p)− liability(ĝ, p)

=





αij
(
−
√

1−aj
aj

+
√

1−bj
bj

, 0
)
− α′

(
−
√

1−aj
aj

+
√

1−bj
bj

, 0
)

if p < aj

αij
(
0,
√

aj
1−aj

+
√

bj
1−bj

)
− α′

(
0,
√

aj
1−aj

+
√

bj
1−bj

)
if p > bj

(αij − α′)
(
−
√

1−p
p +

√
1−bj
bj

,
√

p
1−p +

√
aj

1−aj

)
if p ∈ [aj , bj]

=





(
(α′ − αij)

(√
1−aj
aj
−
√

1−bj
bj

)
, 0
)

if p < aj(
0, (α′ − αij)

(√
bj

1−bj
−
√

aj
1−aj

))
if p > bj(

(α′ − αij)
(√

1−p
p −

√
1−bj
bj

)
, (α′ − αij)

(√
p

1−p −
√

aj
1−aj

))
if p ∈ [aj , bj]

.

Now, we show that the check in Line 15 of Protocol 4 for the given g gives us the condi-

tion
(
x1 + αl

√
1−bl
bl

)(
x2 +

√
al

1−al
αl

)
=
(
x1 − r1 + αu

√
1−bu
bu

)(
x2 − r2 +

√
au

1−au
αu

)
where αx =

∑k
i=0 α

ix that appears in Uniswap V3.

34

Let q =
∑

i q
i and r =

∑
i r

i. The check in Protocol 4 can be rewritten as

q+ r = liability

(
k∑

i=0

gi, p
′

)

= liability

(
k∑

i=0

αiug(j), p′

)

=

k∑

i=0

αiuliability(g(j), p′).

From Proposition 6, we can see that

(
x1 − r1 +

(
k∑

i=0

αiu

)√
1− bu
bu

)
·
(
x2 − r2 +

(
k∑

i=0

αiu

)√
au

1− au

)
= (

k∑

i=0

αiu)2

and (
x1 +

k∑

i=0

αil

√
1− bl
bl

)
·
(
x2 +

k∑

i=0

αil

√
al

1− al

)
=

(
k∑

i=0

αil

)2

,

proving what we need.
The last fact we want to show to complete the proof is that ri = αi

α r for Uniswap V3, where

αi =
∑

j α
ij , α =

∑
j

∑k
o=0 α

oj for j summing over baskets Bl to Bu. We see that

ri = liability(gi, p
′)− qi

= αi(liability(g(j), p′)− liability(g(j), p))

=
αi

α

(
liability(g, p′)− q

)
where g =

k∑

i=0

gi and q =
k∑

i=0

qi

=
αi

α
r,

as desired.

C Detailed discussion on new protocols from section 6

C.1 Soft buckets allowing richer functions than discrete buckets

Define a set a0 < a1 = 0 < a2 < · · · < ak = 1 < ak+1. Our “buckets” Bj will be supported on the
interval [aj−1, aj+1]. To capture the continuous fading, define the triangular function T (j) : [0, 1]→
[0, 1] as T (j)(p) =

(
p−aj−1

aj−aj−1

)
1p∈[aj−1,aj] +

(
aj+1−p
aj+1−aj

)
1p∈[aj ,aj+1]. The corresponding base liquidity

functions are then ℓ(j) = (ℓT (j))(p) where ℓ(p) = 2(p(1−p))−
3
2 , to again use the same base “shape”

as the constant product invariant φα(x) = x1x2 = α2. Let g(j) then be the corresponding base
generating function for ℓ(j).

Now letting Ginit = {∑j αjg
(j) | ∀j αj > 0} and GLP = {∑j αjg

(j) | ∀j αj ≥ 0}, Protocol 4
gives a new liquidity provisioning protocol. While the corresponding computations appear to

35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

T
(j
)
(p
)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

p

ℓ(
j
)
=

(ℓ
T

(j
)
)(
p
)

Figure 2: T (j)(p) and ℓ(j)(p) for aj = 0.3

be essentially as light-weight as Uniswap V3, the liquidity function is better behaved. We can
characterize the possible liquidity functions {g′′ | g ∈ GLP} as the functions fℓ where f is an
arbitrary nonnegative continuous function that is affine on each interval [aj , aj+1]. (Simply take
αj = f(aj).) Thus, we have in particular that liquidity is always continuous in the price in this
new protocol. One can additionally innovate from here, adding more flexibility, while taking care
to keep the various computations manageable.

C.2 Piecewise linear market maker

To demonstrate the robustness of our protocol, in this section we consider a market where the
liquidity curves ℓ are not well-defined. Yet, we show that our general scheme still gives rise to a
sensible market maker.

Consider a market maker that restricts the possible prices to {pi}mi=1 where 0 < a1 < · · · <
am < 1 . Consider a (g(j))′ of the form -

(g(j))′(p) =





aj − 1 p ≤ aj

[aj − 1, aj] p = aj

aj p ≥ aj

.

g′(p) =
∑

j αj(g
(j))′(p) where αj =

∑
i α

ij .
Observe that liquidity is infinity at each price. As prices only move discretely in this market,

the market needs to be parameterized by reserves held / liability vector q. Hence the state of the
market is {αij}i∈{0,··· ,k},j∈{1,··· ,m}, {qi}i∈{0,··· ,k}.

If the current market reserves are q, the price in this market can be derived from the below
formula

price(g, q) = aj∗ where j∗ = argmaxj′ s.t.



q −

m∑

j=1

αj(aj − 1) +

j′−1∑

j=1

αj ≥ 0





36

For a given q, let there exist y ∈ [0, 1) such that q =
∑

j αjaj −
∑m

j=j∗ αj + yαj∗ . We can
maintain this relative liquidity in a bucket after changing the liquidity curves.

For the ModifyLiquidity function, let LP i wants to change its liquidity levels from αij to α′
ij for

price bucket j. The new reserves that LP i needs to deposit is given by q′ − q = (α′
ij − αij)(aj −

1j≥j∗ + y1j=j∗)
ExecuteTrade takes in a trade r, computes the new price p′ corresponding to the new liability

vector q + r using the above given formula.

D Fees and budget balancedness

We show an example when the fees used in DeFi are not budget-balanced: the market maker may
not charge enough in fees to cover those owed to the LPs. To illustrate why, consider a 3 outcome
market with two LPs G = G1+G2 where G1(p) = −2√p1p2 and G2(p) = −2√p2p3. Per Protocol 3,
a trade p→ p′ is given by r = SG(p

′, ·)− SG(p, ·), where

SG(p, ·) = ∇G(p) = ∇G1(p) +∇G2(p) =
(√

p1/p2,
√
p2/p1 +

√
p2/p3,

√
p3/p2

)
.

The trade is then split among the two LPs, as

r1 = ∇G1(p
′)−∇G1(p) =

(√
p′1/p

′
2 −

√
p1/p2,

√
p′2/p

′
1 −

√
p2/p1, 0

)
,

r2 = ∇G2(p
′)−∇G2(p) =

(
0,
√

p′2/p
′
3 −

√
p2/p3,

√
p′3/p

′
2 −

√
p3/p2

)
.

Let us start the market at the uniform price p = (1/3, 1/3, 1/3), and consider a trader wishing
to purchase security 1 in exchange for security 3, as above. Intuitively, as there is liquidity between
securities 1 and 2 (provided by LP 1) and between securities 2 and 3 (provided by LP 2), there
should be “combined” liquidity between 1 and 3. And indeed that is the case: if the trader selects

p′ =
(
3/2+

√
2

3+
√
2
, 1
3+

√
2
, 1
2(3+

√
2)

)
, an expression chosen for arithmetic convenience, we have a resulting

trade r = ∇G(p′) −∇G(p) = (
√
3/2 − 1, 0,

√
1/2 − 1). The split r = r1 + r2 between the LPs is

also roughly as one would expect, each ri being between the corresponding pair of securities:

r1 = ∇G1(p
′)−∇G1(p) =

(
0,
√
2− 1,

√
1/2− 1

)
,

r2 = ∇G2(p
′)−∇G2(p) =

(√
3/2− 1, 1−

√
2, 0
)

.

Using the standard trading fee used in DeFi, i.e., fee(r,q, C) = βr+, feei(r,q, Ci
k
i=1) = β(ri)+,

presents an issue. The fee charged to the trader, β(−r)+ = β(0, 0, 1 −
√

1/2), ignores the fact
that LP 2 provided liquidity that facilitated the trade. Indeed, looking at the fees paid to LPs, we
see this same fee β(−r1)+ = β(0, 0, 1 −

√
1/2) paid to LP 1, plus an additional fee of β(−r2)+ =

β(0,
√
2− 1, 0) to LP 2.

Fortunately, this issue is not present in 2-asset protocols like Protocol 4, but clearly it can
emerge beyond 2 assets/outcomes. Moreover, it seems to emerge precisely when there is “synergy”
among the LPs, enabling trades that fruitfully combine their liquidity. While one could easily fix
this issue by directly charging the trader for the sum of the fees to the LPs, doing so may be
problematic. For example, this proposal would break the abstraction barrier, in the sense that the
fees would depend intimately on the LP profile, not just their combined liquidity. Resolving this
issue adequately is an interesting direction for future work.

37

	Introduction
	Related work

	Background
	Notation and convex analysis
	Cost functions and prediction markets
	Scoring rules
	Automated market makers in decentralized finance

	Defining liquidity in automated market makers
	Liquidity as price insensitivity
	Liquidity as a Hessian matrix

	Liquidity provisioning protocol for prediction markets
	Liquidity provisioning as competing market makers
	General protocol
	Example run of the protocol
	Ensuring no liability
	Practical considerations

	Equivalence of interpretations
	Four interpretations of parallel market making
	Technical definitions
	Equivalence of the interpretations

	Recovering and extending DeFi protocols
	Conventional differences
	Uniswap V2
	Uniswap V3 and general bucketing
	New protocols

	Discussion and open directions
	Proofs From Section 5 and an alternative protocol
	Technical lemmas
	Proof of Theorem 1
	Equivalence of the full protocols and practical considerations

	Proofs and additional working from Section 6
	Proofs related to Uniswap V2 in Section 6
	Liquidity vectors for general bucketing mechanism
	Bucketing scheme for logarithmic market scoring rule (LMSR)
	Discussion on Uniswap V3

	Detailed discussion on new protocols from section 6
	Soft buckets allowing richer functions than discrete buckets
	Piecewise linear market maker

	Fees and budget balancedness

