
Descriptive Complexity: Motivation & Fagin’s Theorem∗

Adithya Bhaskara

July 22, 2024

1 Introduction & Motivation

This work seeks to provide the reader with a brief introduction to the field of descriptive com-
plexity theory. Assuming the background of an older undergraduate student or a beginning
graduate student, we motivate descriptive complexity as a field, provide some background, and
finally state and prove Fagin’s Theorem, a seminal result. We conclude by providing a broad
overview of the “descriptive complexity zoo.”

Following the exposition of [5], the two standard measures of computational complexity are,
of course, time and space complexity. For practical purposes, these measures do suffice; we have
good reason to care how the time it takes for our algorithm to execute scales as a function of the
input size, and we also often care about how the space the algorithm uses scales as well. That
being said, it is difficult to see what the mathematical basis is for choosing time and space as
our measures of complexity.

We have a zoo of complexity classes: P, NP, coNP, EXPTIME, AM, MA, PSPACE, NPSPACE,
and many more. But, with the tools currently at our disposal, we cannot say too much about
the inherent complexities of the languages in these classes. We can only tell how fast or how
much space is required to decide membership in the languages.

Enter Ronald Fagin. In [3], Fagin showed that NP is precisely the class of languages that are
able to be described by existential second-order logic. Fagin’s result importantly connected the
“mathematical” complexities of languages to their “practical” complexities. A statement about
the number of steps a nondeterministic Turing machine could take to solve a decision problem
immediately became a statement about how difficult it was to even express the decision problem.

Fagin’s result wasn’t the end. While this work will not explore other results in descriptive-
complexity in great detail, we provide results relating to the classes coNP, AC0, and PH here1,2.

∗Originally a final project for CSCI 5444: Introduction to the Theory of Computation at the University of
Colorado Boulder, taught by Ashutosh Trivedi, Ph. D. The course was taken in the Fall 2023 semester.

1For readers who have not seen the definitions of AC0 and PH, we provide them here, using [1, 2].

Definition 1 (AC0). A language L is in the complexity class AC0 if it can be solved using polynomial-size,
constant depth, unbounded fanin circuits using AND, OR, or NOT gates [1, 2].

Definition 2 (PH). For i ≥ 1, the language L is in Σp
i if there exists a polynomial-time Turing machine M and

a polynomial q with

x ∈ L ⇐⇒ ∃u1 ∈ X, ∀u2 ∈ X, · · ·Qiui ∈ X,M(x, u1, . . . , ui) = 1

where X = {0, 1}q(|x|) and Qi is either ∀ or ∃ depending on whether i is even or odd, respectively. We then
define the polynomial hierarchy as PH =

⋃
i Σ

p
i [2].

2These results are explained thoroughly in [5].

1

Adithya Bhaskara Descriptive Complexity Theory

Theorem 1. The class coNP is equivalent to the languages that can be expressed in universal
second-order logic.

Theorem 2. The class AC0 is equivalent to the languages that can be expressed in first-order
logic.

Theorem 3. The polynomial time hierarchy PH is equivalent to the languages that can be ex-
pressed in second-order logic.

Now that we have stated some motivation for descriptive complexity theory, we will provide
some notations and preliminaries in the next section.

2 Notation & Preliminaries

Drawing from [4, 5], we first introduce vocabularies and structures.

Definition 3 (Vocabularies, [4]). A vocabulary is a finite set

σ = {R1, . . . , Rm, c1, . . . , cs}

where R1, . . . , Rm are relation symbols with fixed arities and c1, . . . , cs are constant symbols.

Definition 4 (Structures, [4]). A σ-structure is the tuple

A = (A,RA
1 , . . . , R

A
m, c

A
1 , . . . , c

A
s),

where A is a nonempty finite set and each RA
i is a relation on A with arity(RA

i) = arity(Ri) for
i ∈ {1, . . . ,m} and each cAj is a “distinguished element” of A for j ∈ {1, . . . , s}. We refer to A
as the universe of A. We denote ||A|| to mean |A|, the cardinality of the universe of A.

The above definitions are dense, so we will proceed with a few examples.

Example 1 ([4]). An undirected graph can be represented as the structure G = (V,E). The
universe of G is the vertex set V , and E ⊆ V × V is a relation on V with arity 2; we can write
u ∼E v, or equivalently, (u, v) ∈ E, to denote that u, v ∈ V are related. That is, u and v share
an edge in G.

Example 2. An flow network can be represented as the structure N = (V,E,C, s, t). The
universe of N is the vertex set V , and E ⊆ V × V is a relation on V with arity 2. The capacity
of each edge is given by C ⊆ V × V × [0,∞), and s and t are constant symbols representing the
source and sink vertices, respectively.

2

Adithya Bhaskara Descriptive Complexity Theory

We now define what it means for two structures to be isomorphic, i.e., what it means for two
structures to “be the same.”

Definition 5 (Isomorphism of Structures, [4]). Let

A = (A,RA
1 , . . . , R

A
m, c

A
1 , . . . , c

A
s), B = (B,RB

1 , . . . , R
B
m, c

B
1 , . . . , c

B
s)

be σ-structures. The map f : A→ B is an isomorphism if

1. f is bijective,

2. for all cj with j ∈ {1, . . . , s}, f(cAj) = cBj , and

3. for all Ri with i ∈ {1, . . . ,m} with arity ti, and for all a1, . . . , ati ∈ A, it is the case that
RA

i (a1, . . . , ati) if and only if RB
i (f(a1), . . . , f(ati).

We say that A is isomorphic to B if there exists an isomorphism from A to B, and we write
A ∼= B.

The key idea behind the isomorphism of structures is that two structures are the same if there
exists a bijective map between them such that the constant symbols and the relations map to
each other “nicely.” Isomorphism is a technical condition, but it helps us define boolean queries3.

Definition 6 (Boolean Queries, [4]). A class of σ-structures is a set C of σ-structures closed
under isomorphism. That is, if A ∈ C and A ∼= B, then B ∈ C. Let k ∈ Z+. Then, a
boolean query on C is Q : C → {0, 1} where Q(A) is a k-ary relation on A with A ∼= B implies
Q(A) = Q(B).

In other words, C is a set of σ-structures that are all isomorphic to each other, and Q(A)
elicits some property of A. Two isomorphic structures have the same image under Q. We provide
some examples of queries for clarity.

Example 3 (Hamiltonian Path).

HamiltonianPath(G) =

{
0 G does not have a Hamiltonian path.

1 G has a hamiltonian path.

Example 4 (Clique).

Clique(G) =

{
0 G does not have a clique of size k.

1 G has a clique of size k.

We can now define what it means for some property, or boolean query, to be definable in
some system of logic L.

Definition 7 (L-Definability, [4]). Let Q : C → {0, 1} be a boolean query on a class of σ-
structures C. Then, if L is a logic, Q is L-definable if there is an L-sentence ψ such that for all
A ∈ C, Q(A) = 1 if and only if A satisfies ψ.

For the purposes of this work, first-order and second-order logic are defined as follows. We
adapt the first-order definition from [5] and define second-order logic in a similar manner.

3Here, we sacrifice some generality for the sake of clarity.

3

Adithya Bhaskara Descriptive Complexity Theory

Definition 8 (The First-Order Language). The first-order language with respect to σ = (R1, . . . , Rm, c1, . . . , cs),
denoted L1

σ, is the set of formulas built from R1, . . . , Rm and c1, . . . , cs, the equality relation =,
the boolean connectives ∧ and ¬, primitive variables VAR = {x1, . . .}, and the existential quan-
tifier ∃.

We remark that the above definition captures the essentials of first-order language, we often
use “syntactic sugar” in the form of ̸=, ¬, ∨, =⇒ , ⇐⇒ , and ∀. These are defined in the
obvious manner.

Definition 9 (The Second-Order Language). The second-order language with respect to σ =
(R1, . . . , Rm, c1, . . . , cs), denoted L2

σ, can be described as L1
σ equipped with relational variables

RELVAR = {X1, . . .} that we may quantify over. We use ∃kXφ to mean that there exists a
k-ary relations X such that φ is satisfied.

We now provide an example of using second-order logic to specify a decision problem.

Example 5 (Bipartite Graph). Let

ΦBipartite =(∃X1)(∀u)
((
X(u) ∨ ¬X(u)

)
∧ (∀v)

(
(u, v) ∈ E =⇒ X(u) ∧ ¬X(v)

))
.

Let Bipartite(G) be a boolean query defined as

Bipartite(G) =

{
1 G is a bipartite graph.

0 G is not a bipartite graph.
.

Since Bipartite(G) = 1 if and only if G satisfies ΦBipartite, and ΦBipartite is an L2
σ sentence,

we say that Bipartite(·) is L2
σ definable4.

Before formalizing how to capture languages in descriptive complexity classes, we informally
describe existential second-order logic (ESO) and universal second-order logic (USO) in a similar
manner to [4]. We have that ESO is the set of formulas in L2

σ that can be written in the form

∃X1, . . . ,∃Xm, φ(x̄, X1, . . . , Xm).

where φ(x̄, X1, . . . , Xm) ∈ L1
σ and X1, . . . , Xm are relational variables in second-order logic. In

a similar manner, USO is the set of formulas in L2
σ that can be written in the form

∀X1, . . . ,∀Xm, φ(x̄, X1, . . . , Xm).

We finish this section by defining what it means for us to capture a complexity class K.

Definition 10 (Capturing Complexity Classes, [4]). Let C be a class of structures, L be a logic,
and K be a complexity class. We say that L captures K if for every query Q over C, we have that
Q is L-definable if and only if Q ∈ K.

As a notational convenience, we will write L to refer to the complexity class that logic L
captures over all finite structures. So, ESO is precisely the complexity class that ESO captures,
in other words, the complexity class that is described by existential second-order logic. Then,
USO is defined analogously.

4Since we can decide if a graph is bipartite in polynomial time, we can actually make the stronger claim that
Bipartite is definable in a first-order system with a least fixed point operator. For the sake of brevity, we will
not discuss least fixed point operators further but instead refer readers to Chapter 4 of [5] and Chapter 2 of [4].
These operators allow us to define relations inductively.

4

Adithya Bhaskara Descriptive Complexity Theory

3 Fagin’s Theorem

Ronald Fagin, in his Ph. D. thesis, [3], stated and proved what is today known as Fagin’s
Theorem. It is the oldest and most fundamental theorem behind descriptive complexity theory.
We state and prove it below, following [4, 5].

Lemma 1 (Fagin, ESO ⊆ NP). Every boolean query expressible in existential-second order logic
is computable in NP.

[5]. Let Φ = (∃Rr1
1 · · · ∃Rrk

k)φ be a sentence in ESO. We wish to find some nondeterministic
Turing machine M such that for all finite σ-structures A, A satisfies Φ if and only if M accepts
A in polynomial time.

On inputA,M functions by nondeterministically choosing the bits of a binary string of length
||A||ri for each R1, . . . , Rk. Each binary string of length ||A||ri represents Ri. This process takes
a polynomial number of steps. After this is done, we have a structureA′ = (A, R1, . . . , Rk) which
can be viewed as an extension of A. Then, M should accept A if and only if A′ satisfies the first
order sentence φ. We can determine if A′ satisfies φ in logspace5, so we can of course do so in
polynomial time. By our construction of M , M accepts A if and only if there exists some choice
of R1, . . . , Rk such that A′ satisfies φ, which is equivalent to A satisfying Φ = (∃Rr1

1 · · · ∃Rrk
k)φ.

The result follows immediately. ■

We now provide a proof sketch of the other direction. We defer the reader to [5] for a full
proof. The full proof very closely resembles the canonical proof of the Cook-Levin Theorem, of
which a thorough treatment is given in [6].

Theorem 4 (Fagin, ESO = NP). The complexity class NP is equal to the set of boolean queries
expressible in existential second-order logic.

Sketch. [5]] Due to Lemma 3, we need only show NP ⊆ ESO. That is, given some nondeterministic
Turing machine M taking ||A||k − 1 steps on A, we wish to construct an ESO sentence that is
satisfiable if and only if there exists an accepting computation of M . This ESO sentence is of
the form

Φ = (∃C2k
1 · · · ∃C2k

g ∆k)φ

where φ, a first-order sentence, is satisfiable if C̄, ∆̄ is an accepting computation for M on A.
We have that φ takes the form

φ = ϕEncode ∧ ϕConsistency ∧ ϕδ ∧ ϕAcceptance,

where ϕEncode ensures that row 0 of the computation tableau correctly encodes A in binary,
ϕConsistency ensures that each computation cell only contains one Turing machine configuration,
ϕδ ensures that each row follows from the previous row according to the transition function of
M , and ϕAcceptance ensures that the last row has an accepting configuration.

For clarity, we provide the following figure, showing the computation tableau of M on A.
With this construction, we have that Φ = (∃C2k

1 · · · ∃C2k
g ∆k)φ is true if and only if there

exists some accepting computation, C̄, ∆̄, of M on A. As we have now shown NP ⊆ ESO, we
can conclude NP = ESO, as desired. ■

5For the sake of brevity, we do not explain why this is true. See Theorem 3.1 in [4], stating that the set
of boolean queries definable in first-order logic (FO) is contained by the set of boolean queries computable in
deterministic logspace, i.e. FO ⊆ L.

5

Adithya Bhaskara Descriptive Complexity Theory

Figure 1: M ’s computation tableau on input w = w0 · · ·wn−1, where ⊔ is the blank symbol.
Figure 7.9 from [5].

4 The Descriptive Complexity Zoo & Applications

The “descriptive complexity zoo” can be characterized best by Figure 26. With the assistance
of descriptive complexity theory, we can characterize known results from classical complexity as
a statement about the expressibility of the corresponding languages in different logics. We can
also characterize open problems in complexity in a similar manner.

For example, the open problem of NP
?
= coNP can be restated as: “Is the set of queries

definable in ESO equal to the set of queries definable in USO?” The famous P
?
= NP question is

similarly “Is the set of queries definable in first-order logic with a least fixed point operator equal
to the set of queries definable in ESO?” We can also say that first-order queries with transitive
closure express the same set of queries that second-order Krom queries do.

Descriptive complexity theory is applicable both in and outside of theoretical computer sci-
ence. According to Neil Immerman, descriptive complexity was a source of inspiration for a proof
of the Immerman-Szelepcsényi Theorem, which stated that nondeterministic space complexity
classes were closed under complementation (NL = coNL). Furthermore, descriptive complexity
theory also provides extensive mathematical structure to reason through measures of time and
space: two resources that are fundamentally important in engineering. Outside of complexity
theory, descriptive complexity provides insights into database querying. Relational databases
can be thought of as structures, and it is indeed the case that many query languages can be
captured using small extensions to first-order logic. All in all, descriptive complexity theory is a
beautiful, and practical, field.

6We state some notational differences here: ESO := SO∃, USO := SO∀, FO := FO, SO := SO. Notable
acronyms include TC for transitive closure, DTC for transitive closure, -Krom for second-order Krom formulas,
and -Horn for second-order Horn formulas. We do not explain these acronyms, as they are not the focus of this
work. We direct interested readers to [5].

6

Adithya Bhaskara Descriptive Complexity Theory

Figure 2: The descriptive complexity zoo. Figure 2.38 from [5].
.

References

[1] Complexity zoo, https://complexityzoo.net/Complexity Zoo, accessed July 24, 2024

[2] Arora, S., Barak, B.: Computational Complexity: A Modern Approach (2007),
https://theory.cs.princeton.edu/complexity/book.pdf

[3] Fagin, R.: Generalized first-order spectra, and polynomial. time recognizable sets. SIAM-
AMS Proceedings 7, 43–73 (1974)

[4] Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Yardi, M., Venema, Y., Weinstein,
S.: Finite Model Theory and Its Applications. Texts in Theoretical Computer Science. An
EATCS Series, Springer New York, 1 edn. (2007)

[5] Immerman, N.: Descriptive Complexity. Texts in Computer Science, Springer New York
(2012)

[6] Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2012),
https://books.google.com/books?id=H94JzgEACAAJ

7

