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1 Motivation
In this set of notes, we seek to understand the relationships between how difficult different
problems of interest are to solve. One of the most important open questions in mathematics and
theoretical computer science is whether the set of problems that we can efficiently solve is equal to
the set of problems that we can efficiently verify a correct answer to. In symbolic notation, does
P = NP? Techniques from theoretical computer science have allowed us to pose this question
in many equivalent ways, and computer scientists have defined a zoo of complexity classes [1]
to try to better understand this problem. In the following sections, we will start to understand
the basics of computational complexity theory. Courses at CU Boulder that study complexity
theory, and more broadly theoretical computer science, in detail include CSCI 3434/5444, CSCI
4114/5114, and CSCI 6114.

2 Background
Before we define any complexity classes, we first need to understand the setting in which we
study them. We start with the following definitions.

Definition 1 (Alphabet, Strings, Languages). An alphabet over n letters is a set Σ such that
|Σ| = n. We denote the set of all possible finite strings over the alphabet Σ as Σ∗. Finally, a
language is a set L contained by Σ∗; that is, L ⊆ Σ∗.

Remark. We usually take Σ = {0, 1}.

Definition 2 (Decision Problems). A decision problem is a question concerning the membership
of a string x ∈ Σ∗ in L. Given language L, we say that the decision problem encoded by L is the
question x ∈ L? We often represent decision problems by providing an Instance of the problem
and a question to Decide.

We use Definitions 1 and 2 to ground our study of complexity theory mathematically. Any
algorithmic problem can be framed as a decision problem over some alphabet Σ. We provide
some examples.

Example 1. The algorithmic problem of finding the shortest path between nodes s and t in a
graph G = (V,E,w) can be phrased as x ∈ L for

L = {⟨G⟩ : there exists a path between s and t in G of cost at most k}.
∗Originally written for CSCI 3104 at CU Boulder in the Spring 2024 semester in my capacity as a course

assistant.
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The angle brackets around “G” represent an encoding of G in terms of Σ.

Example 2. The algorithmic problem of finding the maximal independent set in a graph G =
(V,E) can be phrased as x ∈ L for

L = {⟨G⟩ : there exists an independent set N of G with |N | ≥ k}.

The angle brackets around “G” represent an encoding of G in terms of Σ.

Definition 3 (Efficiently Decidable). We say that a language L is efficiently decidable if there
exists an algorithm that can decide if x ∈ L in polynomial time.

Remark. Definition 3 is intentionally vague, and more precise statements are beyond the scope
of CSCI 3104.

We now define the complexity classes P and NP.

Definition 4 (P). We say that L ∈ P if there exists some algorithm M(x) that decides L such
that TM (n) ∈ O(nk) for some k ∈ N.

Definition 5 (NP). We say that L ∈ NP if there exists some algorithm V with TV (n) ∈ O(nk)
for some k ∈ N such that for every x ∈ L, there exists some polynomially-sized C ∈ Σ∗ with
V (x,C) = 1. We say that V is a verifier, and C is a certificate.

In other words, P is the set of problems that we can efficiently decide, and NP is the set of
problems that, given some attempt at the solution, we can check if the attempt gives a “yes”
answer in polynomial time.

Remark. The set of problems that we can efficiently verify a “yes” answer to, which is NP,
is not necessarily the same as the set of problems that we can efficiently verify a “no” answer
to. The latter set is referred to as coNP, and whether NP = coNP is a major open problem in
theoretical computer science and mathematics.

Remark. There is an alternate formulation of Definition 5 in terms of nondeterministic Turing
machines. We do not state this definition as it introduces mathematical rigor beyond the scope
of this course; however, this formulation is more foundational. See [4] for more detail.

We now give some examples.

Example 3. Finding the minimum-spanning-tree of a graph is in P since the algorithms of Prim
and Kruskal are polynomial-time.

Example 4. Finding the minimum-spanning-tree of a graph is in NP since, given the graph and
a tree, we can efficiently compute the size of the tree.

Example 5. Determining the maximum flow of a flow network is in P since the Ford-Fulkerson
procedure gives rise to polynomial-time algorithms.

Example 6. Determining if a number is prime is in P by the polynomial-time AKS primality
test [2].

Example 7. Determining if a Boolean formula has a satisfying assignment of variables is in
NP. Given a certificate of variable assignments, we can efficiently check if the assignments are
satisfying.

Example 8. Determining if a graph G = (V,E) has a vertex cover of size at most k is in NP.
Given a certificate C ⊆ V , we can efficiently check if C is a vertex cover and if |V | ≤ k.
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Consider the following theorem.

Theorem 1. We have that P ⊆ NP.

Proof. Suppose L ∈ P. Then, there exists some algorithm M(x) that decides L such that
TM (n) ∈ O(nk) for k ∈ N. Take V = M(x, ·). That is, we can verify a “yes” answer to
membership by deciding membership from scratch. ■

Example 9. Determining if a number is prime is in NP since it is in P.

The million dollar question is whether P = NP, or equivalently by Theorem 1, whether
NP ⊆ P. Most computer scientists and mathematicians intuitively believe that P ̸= NP, but no
one to date has provided a proof. If indeed P = NP, we would be able to solve problems of great
interest efficiently, but many procedures that depend on being difficult, like cryptography, would
break. For a popular and not-so-technical introduction to P and NP, see [3].

To better understand how the complexities of solving different decision problems are related,
we now introduce the notion of reductions.

3 Reductions and NP-Completeness
I can get to the Hale Science Building efficiently if I can get a bike. So, if I can get a bike
efficiently, I can get to the Hale Science Building efficiently. Note that not being able to get a
bike efficiently tells me nothing about if I can get to the Hale Science Building efficiently–maybe
I drive there instead.

Let L1 and L2 be languages. If we can show that we can decide L1 efficiently if we can
decide L2, the complexity of L2 tells us a lot about the complexity of L1. To formalize this idea,
consider the following definitions and theorems.

Definition 6 (Reductions). We say that L1 reduces to L2 if there exists a function f : Σ∗ → Σ∗

such that x ∈ L1 if and only if f(x) ∈ L2; if f is computable in polynomial time, we say that L1

polynomially reduces to L2 and write L1 ≤p L2.

Lemma 1 (Transitivity of ≤p). If L1 ≤p L2 and L2 ≤p L3, then L1 ≤p L3.

Proof. Suppose L1 ≤p L2 and L2 ≤p L3. So, there exist functions f and g, computable in
polynomial time, with x ∈ L1 if and only if f(x) ∈ L2 and y ∈ L2 if and only if g(y) ∈ L3. We
note g ◦ f is computable in polynomial time. Then, x ∈ L1 if and only if g(f(x)) ∈ L3. So,
L1 ≤p L3. ■

Remark. When giving a reduction from L1 to L2. To prove correctness of the reduction, one
must explicitly show how to compute f , and x ∈ L1 =⇒ f(x) ∈ L2, f(x) ∈ L2 =⇒ x ∈ L1.
For polynomial reductions, one must additionally show that f is computable in polynomial time.

Theorem 2. If L1 ≤p L2 and L2 ∈ P, then L1 ∈ P.

Proof. To decide if x ∈ L1 in polynomial time. Compute the reduction function f(x) in polyno-
mial time, and then decide f(x) ∈ L2 in polynomial time since L2 ∈ P. Then, x ∈ L1 if and only
if f(x) ∈ L2. ■

Example 10. Finding the minimum cut of a graph is in P. We can reduce the minimum cut
problem to the maximum flow problem. Given a maximum flow, we can always find the minimum
cut.
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We can use reductions to find the hardest problems in NP. Intuitively, if we could solve one
of the hardest problems in NP, we should be able to solve all the other problems in NP. This
motivates the following definitions.

Definition 7 (NP-Hardness). We say L is NP-hard if for every K ∈ NP, K ≤p L.

Definition 8 (NP-Completeness). We say L is NP-complete if L ∈ NP and L is NP-hard.

We now state and prove the fundamental theorems of NP-completeness.

Theorem 3 (Fundamental Theorem of NP-Completeness I, Importance). If L is NP-complete
and L ∈ P, then P = NP.

Proof. We need only show NP ⊆ P. Take K ∈ NP. By definition of NP-completeness, K ≤p L
so we are guaranteed the existence of a polynomial-time algorithm to decide L. So, to decide
membership of K in polynomial time for any x ∈ Σ∗, we efficiently compute f(x) and then
determine f(x) ∈ L. Recall x ∈ K if and only if f(x) ∈ L. So, we have given a polynomial-time
algorithm to decide K, so K ∈ P. Therefore, NP ⊆ P, as desired. ■

So, if we can show a polynomial-time algorithm for an NP-complete problem, we would have
shown that P = NP.

Theorem 4 (Fundamental Theorem of NP-Completeness II, Practicality). Let L2 ∈ NP. If L1

is NP-complete, and L1 ≤p L2, then L2 is NP-complete.

Proof. Take K ∈ NP. We wish to show K ≤p L2 and we are done. We know that K ≤p L1, and
by assumption, L1 ≤ L2, so K ≤p L2 by transitivity of ≤p. So, L2 is NP-complete. ■

Theorem 3 helps us understand why the definition of NP-completeness is so important in that
a polynomial-time solution to any NP-complete problem would give rise to a polynomial-time
solution for all problems in NP. Theorem 4 helps us find NP-complete problems.

For our first NP-complete problem, we define the Boolean satisfiability problem.

Definition 9 (Boolean Satisfiability (SAT)). The Boolean Satisfiability problem, or SAT, is
given by the following.

• Instance: A Boolean formula φ : {0, 1}n → {0, 1} confined to the ∧, ∨, and ¬ operations.

• Decide: Does there exist ⇀
x ∈ {0, 1}n with φ(

⇀
x) = 1?

Note that we call ⇀
x a satisfying assignment of φ. Formally, we can write SAT = {⟨φ⟩ :

φ is satisfiable}.

Theorem 5 (Cook-Levin). SAT is NP-complete.

By Theorem 3, if we could find a polynomial-time algorithm for SAT, we would have concluded
P = NP. By Theorem 4, if we can reduce SAT to some language L, then L is also NP-complete.
The proof of Theorem 5 is beyond the scope of CSCI 3104, but interested students may refer to
[4] for a proof.
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We now state another useful theorem.

Theorem 6. 3-SAT, given by

• Instance: A Boolean formula φ : {0, 1}n → {0, 1} in conjunctive normal form where all
clauses have three literals.

• Decide: Does there exist ⇀
x ∈ {0, 1}n with φ(

⇀
x) = 1?

is NP-complete.

Proof. Exercise. ■

The proof of Theorem 6 is beyond the scope of CSCI 3104, but is not unapproachable for
interested students. Can you find a way to convert a Boolean formula to an equivalent one in
conjunctive normal form with the constraint that all clauses have three literals?

Remark. Many students have difficulty with the intuition on which “direction” reductions to show
NP-completeness go. To conclude some problem L2 ∈ NP is NP-complete, we must reduce from
another problem L1 that we already know to be NP-complete. That is, we must show L1 ≤p L2.
The idea is similar to a proof by contradiction. That is, we suppose for contradiction, that we
can solve L2 in polynomial time. But then, we must be able to solve L1 in polynomial time. Since
L1 is NP-complete, then P = NP. If P = NP, then, of course we can solve L2 in polynomial time
since L2 ∈ NP. If P ̸= NP, we have a contradiction and so we cannot solve L2 in polynomial time.
The contrapositive of this is that if we can solve L2 in polynomial time, then P = NP. We have
shown that we can solve L2 in polynomial time if and only if P = NP. So, L2 is NP-complete.

4 Showing that Problems are NP-Complete: Examples
In this section, we will present several examples showing that given problems are NP-complete.
Before doing so, we define these problems.

Definition 10 (Independent Set). We say N ⊆ V forms an independent set of graph G = (V,E)
if no v1, v2 ∈ N are adjacent in G. The Independent Set problem is given by the following.

• Instance: A graph G = (V,E).

• Decide: Does there exist an independent set of G of size k?

Definition 11 (Clique). We say N ⊆ V forms a clique of graph G = (V,E) if every v1, v2 ∈ N
are adjacent in G. The Clique problem is given by the following.

• Instance: A graph G = (V,E).

• Decide: Does there exist a clique of G of size k?

Definition 12 (Subset Sum). The Subset Sum problem is given by the following.

• Instance: A finite set S ⊆ N.

• Decide: Does there exist N ⊆ S with
∑

n∈N n = k?

Definition 13 (Knapsack). The Knapsack problem is given by the following.

• Instance: A set of items I ⊆ N, weights W = {w1, . . . , wn} ⊆ N, values V = {v1, . . . , vn} ⊆
N, capacity c, and desired profit v∗. Note that wi and vi correspond, respectively, to the
weight and value of item i.

• Decide: Does there exist N ⊆ I with
∑

wi∈N n ≤ c such that
∑

n∈N vi ≥ v∗?
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Proposition 1. Independent Set is NP-Complete.

Proof. We reduce from 3-SAT. We wish to show that Independent Set is in NP, and is NP-hard.

To show that Independent Set is in NP, our certificate is a set N of vertices. In polynomial
time, we can check if N is of size k and if N is indeed an independent set.

For hardness, since 3-SAT is NP-complete, we will show a reduction from 3-SAT to Indepen-
dent Set. Let

φ = (α1 ∨ β1 ∨ γ1) ∧ · · · ∧ (αk ∨ βk ∨ γk)

be a 3CNF formula. We wish to construct a graph G such that G has an independent set of size
k if and only if φ is satisfiable. Let G = (V,E) with

V = {α1, β1, γ1, . . . , αk, βk, γk}

and
E = {(u, v) : u ⇐⇒ ¬v;u, v ∈ V } ∪ {(αi, βi), (βi, γi), (αi, γi) : i ∈ {1, . . . , k}}.

That is, G has edge (u, v) if and only if either the negation of v is u, or u and v are in the same
clause. We now show G has an independent set of size k if and only if φ is satisfiable.

• (⇒) Suppose G = (V,E) has an independent set N ⊆ V of size k. Then, since literals in
clauses have edges between their corresponding vertices, N must contain a vertex corre-
sponding to at most one literal from each clause. Since the independent set is of size k,
N must contain at least one vertex corresponding to a literal from each clause. Thus, N
contains exactly one vertex corresponding to a literal from each clause. Now, we will set
truth assignments to the literals. For each ni ∈ N , let the literal corresponding to ni be
TRUE. For vertices in the set V \E, set the truth assignments arbitrarily. No contradic-
tions arise since N does not contain vertices corresponding to both x and x̄ for any literal
x, since (x, x̄) is an edge in G. We conclude that φ is satisfiable since N contains exactly
one vertex corresponding to a literal from each clause of φ, and since we set those literals
to TRUE, we have produced a satisfying assignment for φ.

• (⇐) Suppose φ is satisfiable. Then, at least one literal in each clause must be true. Choose
N to be a set of k vertices in G such that the corresponding literals are all true and no
two literals are in the same clause. The existence of N is guaranteed since φ is satisfiable.
Since literals corresponding to the vertices of N are in different clauses, and are all TRUE
N has no edges between its elements. Therefore, we have an independent set N ⊆ V of
size k.

Importantly, our reduction is polynomial-time. So, as we have shown a polynomial-time reduc-
tion from an NP-complete problem to Independent Set, which we have verified to be in NP,
Independent Set is also NP-complete. ■
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Proposition 2. Clique is NP-Complete.

Proof. We wish to show that Clique is in NP, and is NP-hard.

To show that Clique is in NP, our certificate is a set N of vertices. In polynomial time, we
can check if N is of size k and if N is indeed a clique.

For hardness, since Independent Set is NP-complete, as was shown in the previous example,
we will show a reduction from Independent Set to Clique. Let G = (V,E) be a graph, and let
⟨G, k⟩ be an instance of Independent Set. We wish to construct an instance of Clique, ⟨G′, k⟩,
such that graph G′ has a clique of size k if and only if G has an independent set of size k. Let
G′ = (V,E′) where

E′ = {(u, v) : (u, v) /∈ E} ⊆ V × V.

That is, G′ has edge (u, v) if and only if (u, v) is not an edge in G. We now show G′ has a clique
of size k if and only if G has an independent set of size k.

• (⇒) Suppose G′ has a clique N ⊆ V of size k. By definition, for all ni, nj ∈ N , (ni, nj) is
an edge in G′. But by the way G′ was constructed, (ni, nj) is not an edge in G. Therefore,
in G, there exist no edges between vertices in N . So, N ⊆ V is an independent set of size
k for G.

• (⇐) Suppose G has an independent set N ⊆ V of size k. By definition, for all ni, nj ∈ N ,
(ni, nj) is not an edge in G. But by the way G′ was constructed, (ni, nj) is an edge in G′.
Therefore, in G′, all choices of two vertices in N share an edge. So, N ⊆ V is an clique of
size k for G′.

Importantly, our reduction is polynomial-time. So, as we have shown a polynomial-time reduction
from an NP-complete problem to Clique, which we have verified to be in NP, Clique is also NP-
complete. ■

Proposition 3. Subset Sum is NP-complete.

Proof. Exercise. Hint: Reduce from Independent Set. ■
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Proposition 4. Knapsack is NP-complete.

Proof. We wish to show that Knapsack is in NP and is NP-hard.

We first show that Knapsack is in NP. The certificate consists of the subset of items chosen. The
verifier sums up the weights and checks to see if the total weight is at most c. Then, the verifier
sums the values and checks to see if the total value is at least v∗. This is done in polynomial time.

For hardness, since Subset Sum is NP-complete, we will show a reduction from Subset Sum
to Knapsack1. Let S = ⟨S, k⟩ be an instance of the subset sum problem. We wish to construct
an instance K = ⟨W,V, c, v∗⟩ of the knapsack problem such that there exists a subset of weights
with total weight at most c, such that the corresponding profit is at least v∗, if and only if there
is a subset of S with total sum k. Let

K = ⟨W,V, c, v∗⟩ = ⟨S, S, k, k⟩.

We will now show that K has a subset of weights with total weight at most k, such that the
corresponding profit is at least k, if and only if there exists a subset of S with sum k.

• (⇒) Suppose K has a subset of weights with total weight at most k, such that the corre-
sponding profit is at least k. Let this subset be denoted by S∗. By the construction of K,
S∗ ⊆ W = V = S. We have that ∑

s∈S∗

s ≤ k,
∑
s∈S∗

s ≥ k.

So,
∑

s∈S∗ s = k. We have shown that a subset of S, S∗ has total sum k, so there exists a
subset of S with total sum k.

• (⇐) Suppose there exists a subset of S with total sum k. Let this subset be denoted by
S∗. By the construction of K, S∗ ⊆ W = V = S. Since we have that

∑
s∈S∗ s = k, we

immediately have ∑
s∈S∗

s ≤ k,
∑
s∈S∗

s ≥ k,

so there exists a subset of weights, S∗ with total weight at most k, such that the corre-
sponding profit is at least k.

Importantly, our reduction is polynomial-time. So, as we have shown a polynomial-time reduction
from an NP-complete problem to Knapsack, which we have verified to be in NP, Knapsack is
also NP-complete. ■

1Without loss of generality, we will omit the set of items I in Definition 13 from this reduction, as the set of
items is solely to make indexing more explicit. The Decision can be equivalently changed to “Does there exist a
subset of items such that the sum of the corresponding weights is at most c, while the sum of the corresponding
values is at least v∗.”
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