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1 Motivation & Preliminaries
In this set of notes, we first examine Arrow’s Theorem, a famous impossibility result in social
choice theory. Originally stated in [1] by Kenneth J. Arrow in 1951, we have the unfortunate
result that all “reasonable” voting rules, involving 3 or more alternatives, must be dictatorial.
After our melancholic endeavor of proving Arrow’s result, we will consider May’s Theorem,
which will provide slight relief, for the case of 2 alternatives. Finally, as a return to despair, we
will consider the Gibbard-Satterthwaite Theorem, independently stated by Gibbard in [3] and
Satterthwaite in [4].

We start with some definitions, following closely the exposition of [2].
Let N = {1, . . . , n} be a finite set of voters, and let A be a finite set of alternatives–or

candidates. Consider the following definitions.

Definition 1 (Weak and Linear Orders). A binary relation on a finite set A is a weak order if it
is both complete and transitive. A linear order is a weak order that is additionally antisymmetric.
Denote the set of weak orders ⪰ on A by R(A) and the set of linear orders ⪰ on A by L(A).
Note that ≻ denotes the strict part of ⪰.

Weak orders are used to model preferences permitting ties, and linear orders are used to
model strict preferences. The preference of i ∈ N is denoted by ≻i. We now define social welfare
functions, the central object of Arrow’s Theorem.

Definition 2 (Social Welfare Functions (SWFs)). A social welfare function f is a map of the
form f : L(A)n → R(A).

Think of Definition 2 as a type of voting rule: taking in a profile of voters’ preferences
P = (⪰1, . . . ,⪰n), f returns aggregates the preferences into a weak order. Arrow suggested two
natural axioms that SWFs should satisfy. We state them here.

Axiom 1 (Weakly Paretian). An SWF f is weakly Paretian if for all x1, x2 ∈ A, x1 ≻f x2

whenever x1 ≻i x2 for all i ∈ N .

Axiom 2 (Independence of Irrelevant Alternatives (IIA)). An SWF f is independent of irrelevant
alternatives if for all x1, x2 ∈ A, the relative ranking of x1 and x2 by f depends only on the relative
rankings of x1 and x2 provided by the individuals, and not on the individuals’ rankings of some
irrelevant alternative x3.

∗Originally written to better understand basic ideas in social choice theory.

1



Adithya Bhaskara Arrow’s, May’s, and the Gibbard-Satterthwaite Theorems

Intuitively, Axiom 1 specifies that if all voters rank one candidate over another, the SWF
must reflect this preference. Axiom 2 ensures that SWF’s ranking of two alternatives shouldn’t
depend on voters’ preferences involving a third “irrelevant alternative.” Axiom 2 can be thought
of as loose guard against voters’ having an incentive to strategize and misreport their true
preferences. Informally, one shouldn’t change whether they like apples or oranges more when
additionally given the option of bananas.

Now, we define the central object of May’s Theorem and the Gibbard-Satterthwaite Theorem:
social choice functions.

Definition 3 (Social Choice Functions (SCFs)). A social choice function f is a map of the form
f : L(A)n → 2A\∅, where 2A is the power set of A.

Think of Definition 3 as a type of voting rule: taking in a profile of voters’ preferences
P = (≻1, . . . ,≻n), f returns a set of “winners.” If |f(P )| = 1, we say f is single-valued on P . In
this case, we may use the semantics of f : L(A)n → A. We say f is resolute if it is single-valued
for all profiles.

The notion of dictatorial SWFs and SCFs proceeds as follows.

Definition 4 (Dictatorial SWFs and SCFs). An SWF f is dictatorial if there exists i∗ ∈ N such
that for all x1, x2 ∈ A, x1 ≻i∗ x2 implies x1 ≻f x2.

A resolute SCF f is dictatorial if there exists i∗ ∈ N such that for all profiles P where i∗

ranks x∗ above all other alternatives, f(P ) = x∗.
In both cases, we refer to i∗ as the dictator under f .

We now state some natural axioms for SCFs, just as we did for SWFs.

Axiom 3 (Anonymity). An SCF f is anonymous if each pair of voters are interchangeable.
That is, f(P ) = f(P ∗) for profiles P and P ∗, whenever P ∗ is obtained from P by swapping the
ballots cast by two voters i and j.

Axiom 4 (Neutrality). An SCF f is neutral if each pair of alternatives are interchangeable.
That is, when P ∗ is obtained from P by swapping the positions of alternatives x1 and x2 in every
ballot, f(P ∗) is obtained from P by a similar swap. Moreover, we say that f is imposed if there
exists an unelectable candidate x; i.e. for no profile P does x ∈ f(P ).

Axiom 5 (Monotonicity & Positive Responsiveness). An SCF f is monotone if for a preference
P with x ∈ f(P ), and for P ∗ obtained from P by just having one voter rank x higher in their
ballot, x ∈ f(P ∗). We say f over |A| = 2 is positive responsive if x ∈ f(P ) and for P ∗ obtained
from P by just having one voter rank x higher in their ballot, {x} = f(P ∗).

Intuitively, Axiom 3 specifies that the SCF treats all voters equally: a ballot cast by one voter
yields the same preference as the same ballot cast by another voter. Note that nondictatoriality
is a very weak form of anonymity. Axiom 4 ensures that permuting alternatives’ identities on
the ballots yields an analogous permutation in the results. Note that nonimposition is a very
weak form of neutrality. Finally, Axiom 5 requires that alternatives are not negatively affected
by voters ranking them higher.

Remark. As we will explore soon, Axiom 5 is especially insightful when there are only two
alternatives; positive responsiveness, in particular, helps us grapple with ties. Furthermore, a
resolute SCF satisfies monotonicity if a winner x under profile P is still the winner when a voter
increases the ranking of x in a profile P ∗; that is, f(P ) = f(P ∗).
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We now introduce two axioms about voter strategy.

Axiom 6 (Strategyproofness). A resolute SCF f is strategyproof if whenever P ∗ is obtained
from P by having voter i changing their preferences from ⪰i to ⪰∗

i , we have that f(P ) ⪰i f(P
∗).

Axiom 7 (Down Monotonicity). A resolute SCF f is down monotone if whenever P ∗ is obtained
from P by having voter i changing their preferences from ⪰i to ⪰∗

i by dropping some losing
alternative ℓ ̸= f(P ), we have that f(P ) = f(P ∗).

Think of Axiom 6 as ensuring that if voter i has true preferences ⪰i but votes according to ⪰∗
i

in an attempt to strategize, they get no benefit under f ; they consider f(P ) is at least as good
as f(P ∗) under their original preferences. Axiom 7 is similar; if voter i strategizes by dropping a
losing alternative, the outcome will remain the same. It is trivial to see that Strategyproofness
implies Down Monotonicity.

Finally, we state an axiom about the notion of a Paretian SCF.

Axiom 8 (Paretian). An SCF f is Paretian if f(P ) never contains a Pareto dominated alter-
native; for x1, x2 ∈ A, we say that x1 dominates x2 if every voter ranks x1 over x2.

Axiom 8 requires that if all voters rank x1 over x2, x2 shouldn’t be a winner under f .
We will use Axioms 1 and 2 when it comes to Arrow’s Theorem, Axioms 3, 4, and 5 with

May’s Theorem, and Axioms 4, 6, 7, and 8 for the Gibbard-Satterthwaite Theorem.

2 The Heart of Arrow’s Theorem
We build up to Arrow’s Theorem with some lemmas and definitions. Here, we follow the general
argument of [2] with some reorganization and notational differences. For the remainder of this
section, |A| ≥ 3 unless otherwise stated.

Lemma 1 (Dictatorial SWF =⇒ Weakly Paretian and IIA). Any dictatorial SWF f is both
weakly Paretian and IIA.

Proof. Let f be a dictatorial SWF with dictator i∗. Consider arbitrary x1, x2 ∈ A.
If for all i ∈ N x1 ≻i x2, then it must be the case that x1 ≻i∗ x2, so x1 ≻f x2. Therefore, f

is weakly Paretian.
Since the ordering ≻f is equivalent to the ordering ≻i∗ , it is also immediate that the ranking

of x1 and x2 under f is equivalent to that of that of i∗ and doesn’t depend on the preferences
that i∗ has on a third alternative. ■

Definition 5 (Coalitions). A subset C ⊆ N is called a coalition. We say C is decisive over
(x1, x2) if x1 ≻f x2 whenever x1 ≻i x2 for all i ∈ C. Additionally, we say C is weakly decisive
over (x1, x2) if x1 ≻f x2 whenever x1 ≻i x2 for all i ∈ C and x2 ≻j x1 for all j /∈ C.

Lemma 2 (Field Expansion, Weakly Decisive =⇒ Decisive). A weakly Paretian and IIA SWF
f , with a weakly decisive coalition C over (x1, x2), is a decisive for all alternatives.

Proof. Consider mutually distinct x1, x2, x
′
1, x

′
2 ∈ A, and let C be weakly decisive over (x1, x2).

We will show that C is decisive over the alternatives (x′
1, x

′
2).

Let x′
1 ≻i x1 ≻i x2 ≻i x′

2 for all i ∈ C, and for all j /∈ C, let x′
1 ≻j x1, x2 ≻j x′

2, and
x2 ≻j x1, Since C is weakly decisive over (x1, x2), we must have x1 ≻f x2. Since f is weakly
Paretian, we also have x′

1 ≻f x1 and x2 ≻f x′
2. By transitivity of ≻f , we get x′

1 ≻f x′
2. So, C is

decisive over (x′
1, x

′
2).

Because the choice of (x′
1, x

′
2) was arbitrary, C is decisive over all pairs of alternatives. ■
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Remark. To be very explicit, the construction of preferences in Lemma 2 is to exploit two
assumptions. Since x1 ≻i x2 for i ∈ C and x2 ≻j x1 for j /∈ C, we can use the weakly
decisiveness of C to conclude x1 ≻f x2. Since x′

1 ≻k x1 and x2 ≻k x′
2 for all k ∈ N , we can use

the weakly Paretian nature of f to conclude x′
1 ≻f x1 and x2 ≻f x′

2.
Importantly, in our proof, we also did not need to consider how voters outside C rank x′

1

versus x′
2. We obtained x′

1 ≻f x′
2 only from exploiting the weak decisiveness of C, the weakly

Paretian SWF f , and the transitivity of ≻f . Also, note that by IIA, we only needed to make sure
that all i ∈ C had x′

1 ≻i x
′
2. If instead x2 ≻i x1, a similar argument would hold.

Lemma 3 (Splitting Coalitions). Let C ⊆ N be a decisive coalition, with respect to some pair
of alternatives. Additionally, let |C| ≥ 2. Then, we can write C = C1 ∪C2 with C1 ̸= ∅, C2 ̸= ∅,
and C1 ∩ C2 = ∅, where either C1 or C2 is decisive over all pairs of alternatives.

Proof. Recalling that |A| ≥ 3, suppose x1 ≻i x2 ≻i x3 for all i ∈ C1, x2 ≻j x3 ≻j x1 for all
j ∈ C2, and x3 ≻k x1 ≻k x2 for all k /∈ C1 ∪ C2. Because C is decisive, x2 ≻f x3. Then, either
x1 ≻f x3 or x3 ⪰f x1.

Case 1 (x1 ≻f x3): We see that the preferences in C1 match those aggregated by f . Since f is
IIA, whenever voters in C1 rank x1 above x3, the SWF does the same. So, C1 is weakly
decisive over (x1, x3). But by Lemma 2, C1 is decisive for all pairs of alternatives.

Case 2 (x3 ⪰f x1): By transitivity, and x2 ≻f x3, we have that x2 ≻f x1. So, the preferences in
C2 match those aggregated by f . Since f is IIA, whenever voters in C2 rank x2 above x1,
the SWF does the same. So, C2 is weakly decisive over (x1, x2). But by Lemma 2, C2 is
decisive for all pairs of alternatives.

We have shown the desired result. ■

Theorem 1 (Arrow, Weakly Paretian and IIA ⇐⇒ Dictatorial SWF). When |A| ≥ 3, an SWF
is weakly Paretian and IIA if and only if it is dictatorial.

Proof. By Lemma 1, we need only show that an arbitrary weakly Paretian and IIA SWF f is
dictatorial. Note that N is a decisive coalition since f is weakly Paretian. Then, we can apply
Lemma 3 repeatedly to obtain smaller and smaller decisive coalitions. Once we obtain a singleton
decisive coalition, we are done. The element of the singleton decisive coalition is the dictator
under f . Note that the inductive argument is valid since N is finite. ■

3 May’s Theorem
We state and prove May’s Theorem, with relative ease compared to the previous section. We
again follow [2].

Theorem 2 (May, Majority Rule is Best for 2 Alternatives). For two alternatives and an odd
number of voters, majority rule is the unique resolute, anonymous, neutral, and monotone SCF.

For two alternatives and any number of voters, it is the unique anonymous, neutral, and
positively responsive SCF.

Proof. Let A = {x, y}. Trivially, majority rule satisfies all the above properties.
For uniqueness, with any other SCF, we choose a profile where x wins, but with fewer votes

than y. Suppose we switch enough ballots to reverse the number of votes x and y each have.
Monotonicity implies that x still wins; however, neutrality and anonymity implies that y wins.
If x and y tie, meaning {x, y} ∈ f(P ), but x has fewer votes than y, positive responsiveness
similarly contradicts neutrality and anonymity. ■
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4 The Famous Gibbard-Satterthwaite Theorem
Desiring to end with pessimism, we now present the famous Gibbard-Satterthwaite Theorem.
The machinery we have developed from Arrow’s Theorem will provide intuition. Again, let
|A| ≥ 3 unless otherwise stated for this section. As in previous sections, we follow [2], and of
course, we will now start with some definitions and lemmas.

Definition 6 (Blocking and Dictating Sets). Let f be a resolute SCF for |A| ≥ 3 alternatives.
Let x1, x2 ∈ A be distinct and X ⊆ N be a set of voters. We say that X can use x1 to block x2

and write Xx1≻x2 if for all profiles P where every voter in X ranks x1 over x2, then f(P ) ̸= x2.
We say that X is a dictating set if Xx1≻x2 holds for every pair of distinct alternatives x1 and
x2.

Lemma 4 (Push-Down). Let x1, x2, y1, . . . , y|A|−2 be the |A| ≥ 3 alternatives. Let f be resolute
and down monotonic SCF for A, and let P be an arbitrary profile with f(P ) = x1. There exists
a profile P ∗ with f(P ∗) = x1 such that

1. for each voter i with x1 ≻i x2, ≻∗
i= x1 ≻ x2 ≻ y1 ≻ · · · ≻ y|A|−2, and

2. for each voter i with x2 ≻i x1, ≻∗
i= x2 ≻ x1 ≻ y1 ≻ · · · ≻ y|A|−2.

Proof. To obtain P ∗ from P have voters change their preferences by successively dropping
y1, . . . , y|A|−2 to the bottom of their ranking. By down monotonicity, f(P ∗) = f(P ) = x1. ■

Lemma 5 (Blocking Condition). Let f be a resolute and down monotonic SCF. If there exists
a profile P where f(P ) = x1 and for all i ∈ X, it is the case that x1 ≻i x2, and for all j ∈ N\X,
x2 ≻j x1, then it must be the case that X can use x1 to block x2; that is, Xx1≻x2 .

Proof. Suppose for contradiction, we have such a profile P , but it is not the case that Xx1≻x2 .
Consider P ′ where all voters i ∈ X rank x1 over x2 but f(P ∗) = x2. Now, form P ′′ by having any
P ′ voters j ∈ N\X that rank x1 over x2 drop x1 below x2. By down monotonicity, f(P ′′) = x2.

Now, we use Lemma 4 to form P ∗ with f(P ∗) = x1 and P ′′∗ with f(P ′′∗) = x2. But note
that P ∗ = P ′′∗, but f seemingly is not well-defined. This is the contradiction we seek. ■

Lemma 6 (Splitting Blocking Sets). Let f be a resolute Paretian and down monotonic SCF for
|A| ≥ 3 alternatives. Suppose Xx1≻x2 , and X = X1 ∪X2 with X1 ∩X2 = ∅. Let x3 be distinct
from x1 and x2. Then, either Xx1≻x3

1 or Xx3≻x2
2 .

Proof. Consider a profile P where all voters i ∈ X1 have x1 ≻ x2 ≻ x3 ≻ · · ·, all voters j ∈ X2

have x3 ≻ x1 ≻ x2 ≻ · · ·, and all voters k ∈ N\X have x2 ≻ x3 ≻ x1 ≻ · · ·. Since f is Paretian,
f(P ) ∈ {x1, x2, x3}. Since Xx1≻x2 , f(P ) ̸= x2. By Lemma 4, if f(P ) = x1, then Xx1≻x3

1 and if
f(P ) = x3, then Xx3≻x2

2 . ■

Lemma 7 (Blocking and Third Alternatives). Let f be a resolute Paretian and down monotonic
SCF for |A| ≥ 3 alternatives. Suppose Xx1≻x2 and let x3 be distinct from x1 and x2. Then,
Xx1≻x3 and Xx3≻x2 .

Proof. Note X = X ∪ ∅ = ∅ ∪ X is a valid partition under Lemma 6. But also, since f is
Paretian, ∅ cannot block any alternative with any other alternative. Then, applying Lemma 6
with X1 = X gives Xx1≻x3 , and with X2 = X gives Xx3≻x2 . ■
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Lemma 8 (Field Expansion, Blocking =⇒ Dictating). Let f be a resolute Paretian and down
monotonic SCF for |A| ≥ 3 alternatives. If Xx1≻x2 , then X is a dictating set.

Proof. Let x′
1 and x′

2 be distinct from each other in A. Supposing that Xx1≻x2 , We show that
Xx′

1≻x′
2 .

Case 1 (x′
1 = x1): Lemma 7 immediately gives Xx′

1≻x′
2 for all x′

2 ̸= x1 since x′
2 is distinct from

x1 = x′
1 and x2.

Case 2 (x′
1 /∈ {x1, x2}): Lemma 7 gives Xx′

1≻x2 since x′
1 is distinct from x1 and x2. Now, we apply

Lemma 7 again with the distinct alternative x′
2 so Xx′

1≻x′
2 for all x′

1 ̸= x′
2.

Case 3 (x′
1 = x2): Lemma 7 gives Xx1≻x3 . We apply Lemma 7 again to get Xx2≻x3 , and then one

more time to get Xx2≻x′
2 for all x′

2 ̸= x2. Since x′
1 = x2, this gives us that Xx′

1≻x′
2 .

We’ve shown that assuming X can block x2 with x1, X can block arbitrary alternative x′
2 with

arbitrary alternative x′
1. So, X is a dictating set, as desired. ■

Lemma 9 (Splitting Dictating Sets). Let f be a resolute Paretian and down monotonic SCF
for |A| ≥ 3 alternatives. If X is a dictating set with X = X1 ∪X2 and X1 ∩X2 = ∅, either X1

or X2 are also dictating sets.

Proof. Let x1, x2, x2 ∈ A be distinct. By Lemma 6, since Xx1≻x2 , either Xx1≻x3
1 or Xx3≻x2

2 . But
then Lemma 4 tells us that either X1 or X2 are dictating sets. ■

Lemma 10 (Down Monotone =⇒ Paretian). Let f be a resolute nomimposed down monotonic
SCF. Then, f is Paretian.

Proof. Suppose, for contradiction, that all assumptions are satisfied, yet f is not Paretian.
Choose profile P such that every voter ranks x2 above x1 but f(P ) = x1. By nonimposi-
tion, P ′ exists with f(P ′) = x2. If voters in P ′ rank x1 over x2, obtain P ′′ by having them drop
x1 right below x2. Then, by down monotonicity f(P ′′) = x2. Applying Lemma 4 on P to get
P ∗ yields f(P ∗) = x1. Doing the same on P ′′ to get P ′′∗ gives f(P ′′∗) = x2. But, P ∗ = P ′′∗, a
contradiction. ■

Lemma 11 (Dictatorial SCF =⇒ Resolute, Nonimposed, and Strategyproof). Any dictatorial
SCF f is resolute, nonimposed, and strategyproof.

Proof. Let f be a dictatorial SCF with dictator i∗. Consider arbitrary x1, x2 ∈ A.
By definition, a dictatorial SCF is resolute.
It is also obvious that i∗ can make x1 or x2 win by ranking the desired winner over the other,

so f is nonimposed.
Because by definition i∗’s preferences are exactly reflected in f , i∗ has no incentive to strate-

gize. ■
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Now, we state the Gibbard-Satterthwaite Theorem itself.

Theorem 3 (Gibbard-Satterthwaite, Resolute, Nonimposed and Strategyproof ⇐⇒ Dictatorial
SCF). When |A| ≥ 3, an SCF is resolute, nonimposed, and strategyproof if and only if it is
dictatorial.

Proof. By Lemma 11, we need only show that an arbitrary resolute, nonimposed, and strate-
gyproof SCF f is dictatorial.

First, we note, as we did earlier, that it is trivial to see that strategyproofness implies down
monotonicity. We also showed in Lemma 4 that down monotonicity implies Paretian. So, all
strategyproof SCFs are Paretian, and we need only show that an arbitrary resolute, down mono-
tonic, and nonimposed Paretian SCF f is dictatorial.

We will show that there exists singleton dictating set X, of which the element is the dictator.
Since f is Paretian, N must be a dictating set, and we can inductively apply Lemma 9 to obtain
the desired singleton; we never obtain the ∅ because it is not dictating since f is Paretian. We
are done. ■

Looking back, we ask the reader to consider both the similarities and differences between the
statements and proofs of both Arrow’s Theorem and the Gibbard-Satterthwaite Theorem.
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